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Abstract— Drones have become increasingly popular due to 

their many real-world applications such as military, surveillance, 
agriculture. Automatic detection of objects in drone camera 
footage poses challenges due to varied angle, heights, occlusion, 
and illumination. Training a machine learning model on other 
machine learning model predictions is called meta-learning, and 
meta-learning from multiple machine learning models is called 
Stacked Generalization. This research used this technique to 
propose eight Stacked Generalization models to improve on the 
three object detection models – Faster R-CNN, RetinaNet, and 
YOLOv5s. The regression models trained as meta-models were 
XGBoost and Multilayer Perceptron (MLP). Experiments were 
performed on the challenging VisDrone image dataset. All the 
proposed Stacked Generalization models improved from the 
object detection models they learned from, thereby performing 
better than the state-of-the-art base models. The best regression 
model as a meta-model was MLP. The best Stacked Generalization 
model in terms of accuracy was FRCNN-s + RetinaNet-s + 
YOLOv5s-s with MLP meta-models, which scored an mAP50 of 
0.421. Its mAP was 0.244, which improved 4.72% from YOLOv5s. 

Keywords—Deep learning; Stacked Generalization; Meta-
learning; VisDrone2019-DET; Faster RCNN, RetinaNet, YOLOv5 

I. INTRODUCTION  
 Autonomous multiclass object detection in drone images is 
a challenging area of research. Already trained machine learning 
models can increase their prediction accuracy by using their 
predictions or meta-data to train another model, or meta-model. 
The idea of meta-models further learning from what the base 
models have already learned is called meta-learning. Our 
research focus is on meta-learning from multiple object 
detection models to increase the accuracy of the object detection 
models and create the best performing model. 

Meta-learning from multiple machine learning models is 
called Stacked Generalization (SG). Once an input dataset has 
been created from the combined predictions of the trained base 
machine learning models, the dataset can be used to train a 
classification or regression meta-model. SG models have two 
layers. The first are the level-0, or base, machine learning 
models and the second are the meta-models, or level-1 models. 
Since our research is meta-learning object detection, the level-1 
models were regression models to learn from the predicted 
detection boxes. The level-1 regression models used in our 
experiments were XGBoost and Multilayer Perceptron (MLP). 

With four combinations of level-0 models and two different 
level-1 models, we propose eight new SG models, all of which 
improved their corresponding level-0 models. So, the best 
performing model was found to be an SG model. 

Related works, dataset description, methodology, 
experiment setup, and experiment results are examined to go 
over the research. First, works that use the same dataset or 
complete similar tasks such as object detection or meta-learning 
and state-of-the-art approaches are discussed in section II. Next, 
the VisDrone2019-DET and VisDrone-split drone image 
datasets are explained in Section III. Third, the methodology of 
not only the proposed SG models, but also the level-0 object 
detection models are presented in section IV. These level-0 
models are Faster R-CNN (FRCNN) [1], RetinaNet [2], and 
YOLOv5s [3]. Section V briefly explains the hardware and 
software used, the metrics to compare models, and how the 
level-0 and level-1 models were trained. Section VI provides 
and discusses the results of the level-0 and SG models using 
XGBoost and MLP level-1 regression models. Lastly, section 
VII is the conclusion and future work. 

II. RELATED WORK 
 The following articles documented the research on object 
detection methods and meta-learning for object detection. The 
first article published in 2021 compared object detection 
methods Faster R-CNN [1], YOLOv3 [4], RetinaNet [2], 
CenterNet [5], YOLOv5 [3], etc. The methods were trained on 
VisDrone2019 [6] and VisDrone-split as explained in [6]. 
VisDrone-split is the same dataset as VisDrone2019 except it 
splits each image into 600 by 600 pixel sub-images with a 150 
pixel overlap between adjacent sub-images. The researchers also 
proposed their own method, called UCGNet-o and UCGNet, 
which was also trained on VisDrone2019 and VisDrone-split, 
respectively. UCGNet uses a Local Location Module (LLM) to 
localize the objects with a binary map, an Unsupervised 
Clustering Module (UCM), and the Farthest Point Sampling 
(FPS) method to improve clustering efficiency. The results also 
improved the proposed method after using VisDrone-split. 
Splitting the dataset is used in our research as well because 
training models on VisDrone-split provided us better results 
than training on VisDrone2019. 

The final two articles detailed the work done to improve the 
detection of small objects and objects within a dense image in 



[7], [8]. The resulting methods are called YOLOv3_ReSAM and 
AdaZoom. YOLOv3_ReSAM improves small object detection 
by first improving on the YOLOv3-tiny backbone by modifying 
the top-level image feature pyramid so that there is a small-scale 
layer, mesoscale layer, and large-scale layer depending on the 
size of the target. This is because if there is a single scale, then 
the features of small targets might not get noticed. AdaZoom 
improves small object detection by finding the regions with a 
dense amount of small object, then uses reinforcement learning 
to determine the magnification of the zoom based on the size of 
the objects. YOLOv3_ReSAM and AdaZoom defines small 
objects as having areas less than 0.1% of the whole image area. 
With these methods, both YOLOv3_ReSAM and AdaZoom 
improved on the YOLOv3-tiny. So, the article explains why 
models on highly dense datasets have room for improvement 
and thereby provided us in our research to explore improved 
approaches such as meta learning. 

III. DATASET DESCRIPTION 

A. VisDrone2019-DET 
VisDrone2019 dataset comes from the AISKYEYE team at 

the Tianjin University in China [6], [9]. One of four tasks can be 
completed with this dataset. Our research used VisDrone2019-
DET for the object detection task. The ten classes are pedestrian, 
people, bicycle, car, van, truck, tricycle, awning-tricycle, bus, 
and motor. There are 7,019 images between the training and 
validation datasets. The validation dataset was used as the test 
dataset in this research. There was a wide range of image sizes, 
so they were resized to 1,500 by 1,500 pixels to have the same 
dimensions. 

B. VisDrone-split 
Figure 1 shows an image from the VisDrone2019 training 

dataset. Every class except truck and bus are shown. On the left 
side of the image there are three cars hidden behind trees within 
yellow boxes showing that they are a part of the ground truth. 
There is a car and a tricycle in the top of the image that are also 
hidden behind trees, but they are not a part of the ground truth. 
To handle the errors in the ground truth, each image was split 
into equal sized sub-images with a length and height of 500 
pixels. The images without objects in the ground truth were 
removed. This new dataset was named VisDrone-split, which 
has a total of 39,557 images in the training and test datasets. 

IV. RESEARCH METHODOLOGY 
The object detection models that were trained on the 

VisDrone-split dataset were Faster R-CNN, RetinaNet, and 
YOLOv5s. The predictions of these three models trained the 
proposed Stacked Generalization models, so this section goes 
over the methodology of various models.  

A. Faster RCNN 
Faster R-CNN (FRCNN) [1] has a ResNet + Region 

Proposal Network (RPN) backbone. The model in our research 
specifically used ResNet50. With an input image of any size, 
RPN uses anchor boxes and a neural network to generate a set 
of regions and locate potential objects. The class loss is Log loss 
of the object and not object classes. The regression loss is a 
robust loss function. The class and regression losses are labeled 

as 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟, respectively. The loss function for anchor is the 
following: 

 𝐿𝐿 = 1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

∑ 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖∗)𝑖𝑖 +  𝜆𝜆 1
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟

∑ 𝑝𝑝𝑖𝑖∗𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖∗)𝑖𝑖 , (1) 

where 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑖𝑖∗𝜖𝜖{0,1} are the probabilities of the 𝑖𝑖𝑡𝑡ℎanchor and 
the ground truth, respectively. Ground truth 𝑝𝑝𝑖𝑖∗ is only 1 if the 
𝑖𝑖𝑡𝑡ℎanchor is positive. The anchor and ground truth bounding box 
coordinates are represented by the 𝑡𝑡𝑖𝑖  and 𝑡𝑡𝑖𝑖∗, respectively. 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 
and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 are normalized with N values. Once the objects were 
located, then they were classified after applying ROI Pooling. 
This is faster than using a Selective Search approach to locate 
potential objects. 

B. RetinaNet 
RetinaNet [2] has a ResNet backbone followed by a Feature 

Pyramid Network (FPN). The model in our research specifically 
used ResNet50. FPN is used to extract features by creating 
feature maps at several scales. After FPN is applied, RetinaNet 
uses subnetworks to locate and classify predictions of anchor 
boxes. RetinaNet uses the focal loss function, which uses a 
focusing parameter to increase loss for predictions with a 
smaller probability [10]. 

C. YOLOv5  
YOLOv5 [3] can be characterized by its backbone, neck, and 

head. The backbone is CSPDarknet53 [11] with Cross Stage 
Partial connections (CSP) [12], [13]. The neck is Spatial 
Pyramid Pooling Fusion (SPPF) [14] and CSP-Path Aggregation 
Network (CSP-PAN) [15], [12]. SPPF comes from Spatial 
Pyramid Pooling (SPP) [16], which removes the need for fixed 
input image sizes. However, SPP is slower than SPPF. 
Individually, CSP reduces expensive computations and PAN 
preserves localization information to improve instance 

 
Figure 1.  An annotated 1,500 pixel squared training image from 
VisDrone2019 [6] dataset. Examples from eight of the ten classes are 
shown in the yellow bounding box – pedestrian, bicycle, can, van, tricycle, 
awning-tricycle, and motor. 

 



segmentation. There is an output head and loss function for 
bounding boxes, objectness, and class separately. Objectness 
loss uses Binary Cross Entropy (BCE) loss, class loss also uses 
BCE loss, and location loss uses Complete Intersection over 
Union (CIOU) loss [17]. BCE for m classes and n predictions is: 

 𝐵𝐵𝐵𝐵𝐵𝐵 = − 1
𝑛𝑛
∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖))𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 , (2) 

where 𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖)  is the probability of class j. CIOU for two 
detection boxes a and b is: 

 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎,𝑏𝑏) = 1 − 𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎, 𝑏𝑏) + 𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡(a, b)2/𝑐𝑐2 + 𝛼𝛼 (3) 

where dist(a,b) is the Euclidean distance, c is the length of the 
diagonal of the smallest box covering both a and b, and α is the 
aspect ratio. 

D. Proposed Stacked Generalization Models 
1) Creating the Meta-dataset 
The predictions from level-0 object detection models were 

used to train the meta-models and test the proposed Stacked 
Generalization models. First, datasets to train meta-regression 
models were created, which is shown in the orange text boxes in 
Figure 2. The predictions from the level-0 models and the 
ground truths of the training dataset were first converted into 
tables. The level-0 tables contained the four coordinates of 
bounding boxes, the classification, the image number, the 
confidence, and the model as its features. Next, each ground 
truth in each image was paired with the closest prediction from 
each level-0 model. To select the closest prediction to a ground 
truth, the prediction had the same classification and the highest 
Intersection over Union (IOU) with that ground truth. IOU is a 
ratio between two bounding boxes that measures their 
overlapping area to their total area. If there was no prediction 
from any level-0 model that was paired with a ground truth, then 
that ground truth was not used in training. If there was at least 
one prediction paired with a ground truth, then a null prediction 
was used as any missing prediction from the other level-0 
models. Each ground truth is left with a group of predictions 
from each level-0 model. To replace the null(s) in each group, 
the prediction closest to its ground truth is used. After removing 
the duplicates, a meta-dataset is created with the four 

coordinates of the ground truth and each level-0 bounding box, 
the confidence of each level-0 prediction, and IOU between 
every two level-0 predictions to measure how close the 
predictions are to each other.  

2) Training the Level-1 models 
The meta-dataset was used to train level-1 models to predict 

each coordinate of a bounding box, which is why regressors 
were trained. However, the distribution of objects between the 
ten classes is highly skewed, so the predicted class of each 
bounding box is not predicted. To predict the coordinates, four 
level-1 models were used to predict one coordinate each. This 
means the meta-dataset was split into four meta-datasets. For 
example, the meta-dataset to train a level-1 model to predict the 
Y-min coordinate used the Y-min coordinates of each level-0 
model, the confidence scores, and the IOUs as its features. 

These four meta-datasets are used to train four XGBoost 
level-1 models or four MLP level-1 models, which is shown in 
the purple and teal text boxes of Figure 2. Four-fold cross 
validation was used to find the number of trees, the depth of each 
tree, and the learning rate to provide the best results of the 
XGBoost level-1 models. Each MLP had two fully connected 
layers and an output layer of one node. The number of nodes in 
the first layer was one plus the number of features in the meta-
dataset since the more level-0 models there were, the more 
features there were. The Mean Squared Error (MSE) was used 
to determine the best time to stop training, which is further 
explained in the next section. The MSE for n datapoints is 
defined as: 

 𝑀𝑀𝑀𝑀𝐵𝐵 = 1
𝑛𝑛
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤��

2𝑛𝑛
𝑖𝑖=1 , (4) 

where Y are the ground truths and Y hat are the predicted 
coordinates.  

3) Testing the Stacked Generalization Models 
To test the resulting SG models after training, the test meta-

dataset is created by pairing each level-0 prediction to every 
other level-0 prediction instead of the ground truth. The resulting 
meta-dataset was split similarly to the training meta-dataset. 
After the coordinate outputs were combined, duplicates were 

 
Figure 2.  System pipeline of one of the eight proposed Stacked Generalization Model that combined FRCNN-s + RetinaNet-s + YOLOv5s-s, where “-s” 
stands for the VisDrone-split dataset for which the level-0 models are trained on. The objects in the input images are predicted by the level-0 models as 
shown in the blue, light yellow, and light red text boxes. The predictions then grouped and used to create four meta-datasets as shown in the deeper yellow 
text boxes. These four meta-datasets are used to train four level-1 meta-regressors to predict one bounding box coordinate each, which is shown in the purple 
and teal text boxes. The last two text boxes show combining the coordinate prediction to get the final set of predictions. 



removed since many of the same predictions were in multiple 
groups. The final set of predictions could then be used to 
calculate the metrics. Figure 2 shows the specific SG, FRCNN-
s + RetinaNet-s + YOLOv5s-s, which is one of the eight 
proposed SG models. 

V. EXPERIMENT SETUP 
To perform the SG experiments, certain hardware and 

software was required, object detection metrics needed to be 
understood, and the level-0 and level-1 model parameters 
needed to be set up to be trained. 

A. Hardware and Software 
The three level-0 models and all the SG experiments were 

trained using a NVIDIA GeForce RTX 3060 with 6 GB of 
dedicated memory. The application to run the experiments was 
Jupyter Notebook. To train the level-0 models on a custom 
dataset required an API or set of libraries, a dataset format, and 
file type for the dataset. This also includes a preferred or 
required operating system. The two file types for object 
detection used were text for YOLOv5s and JSON for FRCNN 
and RetinaNet. The format for the annotations in JSON files is 
given at the official COCO website [18]. The coordinate format 
that VisDrone provided was “X center, Y center, width, height.” 
However, the level-0 models required the “X min, Y min, X max, 
Y max,” coordinate format. These box coordinates were in pixels 
for FRCNN and RetinaNet and normalized for YOLOv5s. The 
meta-datasets to train the level-1 models were set up using a 
CPU.  

B. Metrics 
The metric, average precision (AP), measures the prediction 

accuracy of a single class object detection model. After ordering 
each prediction by its confidence score, the precision and recall 
values are calculated after each prediction. Each set of values 
creates an (x, y) point to create the precision-recall curve, and 
the area under the precision-recall curve is the AP, which is 
detailed in [19]. The mean AP (mAP) is the result of finding the 
AP for each class separately in a multiclass model, then 
averaging the results. One of the metrics used in this research 
was mAP with a 50% Intersection over Union (IOU) threshold 
(mAP50), which means that the IOU of a true positive prediction 
and a ground truth is more than 50%. The other metric used was 
mAP with a 50:5:95% IOU threshold (mAP). This metric is 
calculated by averaging all the mAPs from an IOU of 50% to 
95% with increments of 5%. The COCO website [20] states that 
mAP is the best metric to determine performance on COCO, so 
mAP was the priority over mAP50 to determine the best model 
in this research. 

C. Level-0 Model Parameter Setups 
The set of object detection models that were trained were 

YOLOv5s [3], Faster R-CNN (FRCNN) [1], and RetinaNet [2]. 
Training the YOLOs required annotations in text files as in the 
original dataset, but each box coordinate was normalized. 
Training YOLOv5s on VisDrone-split used the Adam optimizer 
and a learning rate of 0.005 or 0.0025. FRCNN and RetinaNet 
both models required the annotations in JSON files. They 
trained for at least 10,000 iterations each once loss seemed to 
flatten sufficiently. Before training on a custom dataset, the 
dataset was registered to be accessed, the model weights were 

initialized, and the parameters were set. Training FRCNN and 
RetinaNet on VisDrone-split used default parameters with a 
learning rate of 0.002 or 0.001. After training, a 0.1 confidence 
threshold provided optimum results. 

D. Level-1 Model Parameter Setups 
As was explained in part C of Section IV, fourfold cross 

validation was used to train XGBoost meta-regressors and two 
fully connected layers were used to create the MLP meta-
regressors. For XGBoost, the hyperparameters to generate the 
best results are about 150 to 250 trees, a max depth of four, five, 
or eight for each tree, and a learning rate of 0.05 for each 
coordinate level-1 model. To find the best combination of three 
hyperparameters, GPU was used to speed up training. For each 
MLP level-1 model, an Adam optimizer, a learning rate of 
0.001, and a batch size of 128 was used. Each MLP ran for a 
maximum of 100 with ten epochs of early stopping based on the 
lowest MSE. To determine the best time to stop, one fourth of 
the training dataset was used as a validation dataset. Once MSE 
of the validation dataset did not decrease after ten epochs, then 
the epoch with the lowest validation MSE was used as the final 
MLP coordinate model. To run for a maximum of 100 epochs, a 
GPU was also used to speed up training. 

Table 1 shows the average runtime of combining two and 
three level-0 models based on what meta-regressor was used in 
the SG model. The time is from grouping the level-0 predictions 
to getting the results to an SG model. There is only one SG 
model with three level-0 models using either XGBoost or MLP, 
so its runtime is what is shown in the table. However, the 
average runtime of all the of two level-0 models for each meta-
model is taken. Clearly there is a longer runtime for more level-
0 models being combined. There is also a longer runtime from 
using an XGBoost to MLP level-1 model. The next section 
shows the SGs with MLP results are worth the additional 
runtime. 

VI. RESULTS AND DISCUSSION 
The eight experiments done included four SG experiments 

using XGBoost level-1 models and four SG experiments using 
MLP level-1 models. The four experiments using each type of 
level-1 model came from the four combinations of FRNN, 
RetinaNet, and YOLOv5s. The MLP SG models are consistently 
more accurate than their XGBoost counterparts. 

A. Level-0 Models 
The set of level-0 models are Faster R-CNN (FRCNN), 

RetinaNet, and YOLOv5s trained on VisDrone-split shown in 
both Table II, where “-s” is for models trained on VisDrone-
split. The metric results of YOLOv5s trained on VisDrone and 
VisDrone-split were similar and the results of FRCNN trained 
on VisDrone-split were significantly better than trained on 
VisDrone. So, experiments were done with level-0 models 

TABLE I. SG MODEL AVERAGE RUNTIME IN MINUTES BASED ON THE 
LEVEL-1 MODEL AND NUMBER OF LEVEL-0 MODELS 

Number of Level-0 Models 2 3 
XGBoost SG Runtime (min) 39 66 

MLP SG Runtime (min) 45 71 

 



trained on VisDrone-split only. Since the same level-0 model 
predictions are used in both XGBoost and MLP SG models, the 
results of the level-0 models are shown in Table II. 

B. XBGoost Stacked Generalization Models 
The set of three level-0 models were stacked to create four 

combinations of input to XGBoost. The XGBoost meta-learners 
that trained on the output of level-0 models were tested on 
VisDrone-split. Table II shows the average mAP50, average 
mAP, and mAP per class of the SG models with XGBoost level-

1 models trained on each set of level-0 models and trained on 
VisDrone-split. The most accurate XGBoost SG model from 
Table II according to mAP of 0.242 came from FRCNN-s + 
RetinaNet-s + YOLOv5s-s. 

All XGBoost SG models on VisDrone-split improved their 
corresponding level-0 models when measuring mAP, but the SG 
model that improved its level-0 models the most was FRCNN-s 
+ RetinaNet-s. FRCNN-s + RetinaNet-s may have improved the 
most because the level-0 metrics were so close. However, it 

TABLE II.  Level-0 Models and Proposed MLP and XGBoost based SG MODELS’ MAP PER CLASS AND MAP50 

Method mAP50 mAP pedes-
trian 

people bicycle car van truck tricycle awning- 
tricycle 

bus motor 

Level-0 Models 

FRCNN 0.304 0.168 0.133 0.087 0.023 0.479 0.237 0.173 0.107 0.057 0.257 0.127 

FRCNN-s 0.380 0.209 0.245 0.177 0.095 0.513 0.247 0.148 0.135 0.051 0.265 0.216 

RetinaNet-s 0.382 0.214 0.215 0.161 0.106 0.534 0.280 0.165 0.144 0.059 0.259 0.221 

YOLOv5s 0.413 0.240 0.259 0.161 0.086 0.624 0.327 0.174 0.152 0.077 0.307 0.236 

YOLOv5s-s 0.415 0.233 0.237 0.159 0.094 0.569 0.343 0.167 0.136 0.072 0.324 0.233 

Proposed XGBoost SG Models 

FRCNN-s + 
RetinaNet-s 

0.398 0.227 0.239 0.178 0.113 0.541 0.289 0.178 0.152 0.063 0.287 0.233 

RetinaNet-s + 
YOLOv5s-s 

0.412 0.238 0.233 0.165 0.110 0.563 0.341 0.186 0.147 0.069 0.325 0.240 

FRCNN-s + 
YOLOv5s-s 

0.423 0.241 0.252 0.181 0.115 0.554 0.325 0.182 0.153 0.074 0.324 0.246 

FRCNN-s + 
RetinaNet-s + 
YOLOv5s-s 

0.420 0.242 0.250 0.183 0.115 0.557 0.329 0.188 0.160 0.069 0.320 0.249 

Proposed MLP SG Models 
FRCNN-s + 
RetinaNet-s 

0.398 0.230 0.244 0.181 0.115 0.545 0.291 0.178 0.153 0.064 0.289 0.237 

RetinaNet-s + 
YOLOv5s-s 

0.413 0.240 0.240 0.169 0.111 0.566 0.343 0.187 0.149 0.069 0.324 0.243 

FRCNN-s + 
YOLOv5s-s 

0.423 0.242 0.255 0.184 0.115 0.558 0.326 0.183 0.153 0.073 0.322 0.248 

FRCNN-s + 
RetinaNet-s + 
YOLOv5s-s 

0.421 0.244 0.255 0.187 0.117 0.559 0.332 0.187 0.161 0.069 0.325 0.251 

Note: The “-s” means which level-0 models were trained on VisDrone-split. Bold values are the most improved class per method and the bold method is 
the best performing model. The green and blue cells show the highest metrics. 

 

 
Figure 3.  mAP50 and mAP metric comparison between the level-0 models and proposed MLP SG models. The green and red boxes show the positive and 
negative percent changes between each SG model and their corresponding level-0 model with the highest metric. For example, in case of FRCNN-s + 
RetinaNet-s, the mAP50 percent change is from 0.382 for RetinaNet-s to 0.398 and the mAP percent change is from 0.214 to 0.230, we take the higher of the 
two individual corresponding models the RetinaNet-s and the FRCNN-s results to compute the percentage change in SG model. 

 
 



wasn’t always the case that the farther apart the metrics between 
the level-0 models, the worse the percent change in the level-1 
model metrics. When measuring mAP50, a prediction is a true 
positive if it has an IOU with a ground truth of at least 50%. The 
true positives must have sufficiently high IOUs to keep up with 
the increasing IOU thresholds when measuring mAP. The 
RetinaNet-s + YOLOv5s-s mAP50 metric may not have 
improved from the mAP50 metrics of its level-0 models because 
the level-0 true positive predictions were removed during the 
preprocessing phase and the level-1 model decreased the 
prediction IOUs with the ground truth from above 50% to below 
50%. 

C. Multilayer Perceptron Stacked Generalization Models 
The set of three level-0 models were stacked to create four 

combinations of input to Multilayer Perceptron (MLP); the same 
four as with XGBoost. The MLP SG models that trained on the 
level-0 models were tested on VisDrone-split. Table II shows 
the average mAP50, average mAP, and mAP per class of the SG 
models with MLP level-1 models trained on each set of level-0 
models trained on VisDrone-split. The best MLP SG model 
results from Table II according to mAP of 0.244 again came 
from FRCNN-s + RetinaNet-s + YOLOv5s-s. 

Similar to the XGBoost SG models, these MLP SG models 
tested on VisDrone-split improved on all the combinations of 
their corresponding level-0 models. The most improved level-1 
model was FRCNN-s + RetinaNet-s as shown in Figure 3, 
whose every class mAP, besides pedestrian, had a positive 
percent change. The percent change for each class was 
calculated from the best class metric from its level-0 models. 

VII. CONCLUSION AND FUTURE WORK 
Eight SG models were proposed in this paper. The results of 

the previous section showed that every proposed SG model 
improved upon their corresponding state-of-the-art level-0 
models, so an SG model was the best performing model using 
either XGBoost or MLP level-1 models. The most improved SG 
model was FRCNN-s + RetinaNet-s with MLP, whose mAP 
improved 7.48% from RetinaNet. FRCNN-s + RetinaNet-s + 
YOLOv5s-s with MLP was the model with the highest mAP, 
whose mAP50 and mAP were 0.421 and 0.244, respectively. 
Furthermore, their mAP improved 4.72% from YOLOv5s. 
Thus, FRCNN-s + RetinaNet-s + YOLOv5s-s is the best 
performing of all the proposed SG models. 

Since meta-learning improved every object detection model 
using SG, future work would include using meta-learning with 
SG with larger and more accurate object detection models to test 
if better performing models can still be improved upon. Other 
methods can also be used to improve object detection models by 
combining their predictions without meta-learning. The same 
steps can be used to create the meta-datasets of predictions, but 
instead of meta-learning, a non-meta-learning method can be 
applied. One such method could be Decision Fusion [8], which 
combines the predictions of multiple models to create a subset 
of predictions more accurate than the individual models. This 
can be used to test how meta-learning performs compared to 
non-meta-learning methods. 
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