
Stacked Generalization Models for Improving
Multiclass Object Detection in Drone Images

Allison Nicole Paxton
Department of Computer Science

California State University
Northridge, CA, USA

allison.paxton.505@my.csun.edu

Abhishek Verma
Department of Computer Science

California State University
Northridge, CA, USA

abhishek.verma@csun.edu

Abstract— Drones have become increasingly popular due to

their many real-world applications such as military, surveillance,
agriculture. Automatic detection of objects in drone camera
footage poses challenges due to varied angle, heights, occlusion,
and illumination. Training a machine learning model on other
machine learning model predictions is called meta-learning, and
meta-learning from multiple machine learning models is called
Stacked Generalization. This research used this technique to
propose eight Stacked Generalization models to improve on the
three object detection models – Faster R-CNN, RetinaNet, and
YOLOv5s. The regression models trained as meta-models were
XGBoost and Multilayer Perceptron (MLP). Experiments were
performed on the challenging VisDrone image dataset. All the
proposed Stacked Generalization models improved from the
object detection models they learned from, thereby performing
better than the state-of-the-art base models. The best regression
model as a meta-model was MLP. The best Stacked Generalization
model in terms of accuracy was FRCNN-s + RetinaNet-s +
YOLOv5s-s with MLP meta-models, which scored an mAP50 of
0.421. Its mAP was 0.244, which improved 4.72% from YOLOv5s.

Keywords—Deep learning; Stacked Generalization; Meta-
learning; VisDrone2019-DET; Faster RCNN, RetinaNet, YOLOv5

I. INTRODUCTION
 Autonomous multiclass object detection in drone images is
a challenging area of research. Already trained machine learning
models can increase their prediction accuracy by using their
predictions or meta-data to train another model, or meta-model.
The idea of meta-models further learning from what the base
models have already learned is called meta-learning. Our
research focus is on meta-learning from multiple object
detection models to increase the accuracy of the object detection
models and create the best performing model.

Meta-learning from multiple machine learning models is
called Stacked Generalization (SG). Once an input dataset has
been created from the combined predictions of the trained base
machine learning models, the dataset can be used to train a
classification or regression meta-model. SG models have two
layers. The first are the level-0, or base, machine learning
models and the second are the meta-models, or level-1 models.
Since our research is meta-learning object detection, the level-1
models were regression models to learn from the predicted
detection boxes. The level-1 regression models used in our
experiments were XGBoost and Multilayer Perceptron (MLP).

With four combinations of level-0 models and two different
level-1 models, we propose eight new SG models, all of which
improved their corresponding level-0 models. So, the best
performing model was found to be an SG model.

Related works, dataset description, methodology,
experiment setup, and experiment results are examined to go
over the research. First, works that use the same dataset or
complete similar tasks such as object detection or meta-learning
and state-of-the-art approaches are discussed in section II. Next,
the VisDrone2019-DET and VisDrone-split drone image
datasets are explained in Section III. Third, the methodology of
not only the proposed SG models, but also the level-0 object
detection models are presented in section IV. These level-0
models are Faster R-CNN (FRCNN) [1], RetinaNet [2], and
YOLOv5s [3]. Section V briefly explains the hardware and
software used, the metrics to compare models, and how the
level-0 and level-1 models were trained. Section VI provides
and discusses the results of the level-0 and SG models using
XGBoost and MLP level-1 regression models. Lastly, section
VII is the conclusion and future work.

II. RELATED WORK
 The following articles documented the research on object
detection methods and meta-learning for object detection. The
first article published in 2021 compared object detection
methods Faster R-CNN [1], YOLOv3 [4], RetinaNet [2],
CenterNet [5], YOLOv5 [3], etc. The methods were trained on
VisDrone2019 [6] and VisDrone-split as explained in [6].
VisDrone-split is the same dataset as VisDrone2019 except it
splits each image into 600 by 600 pixel sub-images with a 150
pixel overlap between adjacent sub-images. The researchers also
proposed their own method, called UCGNet-o and UCGNet,
which was also trained on VisDrone2019 and VisDrone-split,
respectively. UCGNet uses a Local Location Module (LLM) to
localize the objects with a binary map, an Unsupervised
Clustering Module (UCM), and the Farthest Point Sampling
(FPS) method to improve clustering efficiency. The results also
improved the proposed method after using VisDrone-split.
Splitting the dataset is used in our research as well because
training models on VisDrone-split provided us better results
than training on VisDrone2019.

The final two articles detailed the work done to improve the
detection of small objects and objects within a dense image in

[7], [8]. The resulting methods are called YOLOv3_ReSAM and
AdaZoom. YOLOv3_ReSAM improves small object detection
by first improving on the YOLOv3-tiny backbone by modifying
the top-level image feature pyramid so that there is a small-scale
layer, mesoscale layer, and large-scale layer depending on the
size of the target. This is because if there is a single scale, then
the features of small targets might not get noticed. AdaZoom
improves small object detection by finding the regions with a
dense amount of small object, then uses reinforcement learning
to determine the magnification of the zoom based on the size of
the objects. YOLOv3_ReSAM and AdaZoom defines small
objects as having areas less than 0.1% of the whole image area.
With these methods, both YOLOv3_ReSAM and AdaZoom
improved on the YOLOv3-tiny. So, the article explains why
models on highly dense datasets have room for improvement
and thereby provided us in our research to explore improved
approaches such as meta learning.

III. DATASET DESCRIPTION

A. VisDrone2019-DET
VisDrone2019 dataset comes from the AISKYEYE team at

the Tianjin University in China [6], [9]. One of four tasks can be
completed with this dataset. Our research used VisDrone2019-
DET for the object detection task. The ten classes are pedestrian,
people, bicycle, car, van, truck, tricycle, awning-tricycle, bus,
and motor. There are 7,019 images between the training and
validation datasets. The validation dataset was used as the test
dataset in this research. There was a wide range of image sizes,
so they were resized to 1,500 by 1,500 pixels to have the same
dimensions.

B. VisDrone-split
Figure 1 shows an image from the VisDrone2019 training

dataset. Every class except truck and bus are shown. On the left
side of the image there are three cars hidden behind trees within
yellow boxes showing that they are a part of the ground truth.
There is a car and a tricycle in the top of the image that are also
hidden behind trees, but they are not a part of the ground truth.
To handle the errors in the ground truth, each image was split
into equal sized sub-images with a length and height of 500
pixels. The images without objects in the ground truth were
removed. This new dataset was named VisDrone-split, which
has a total of 39,557 images in the training and test datasets.

IV. RESEARCH METHODOLOGY
The object detection models that were trained on the

VisDrone-split dataset were Faster R-CNN, RetinaNet, and
YOLOv5s. The predictions of these three models trained the
proposed Stacked Generalization models, so this section goes
over the methodology of various models.

A. Faster RCNN
Faster R-CNN (FRCNN) [1] has a ResNet + Region

Proposal Network (RPN) backbone. The model in our research
specifically used ResNet50. With an input image of any size,
RPN uses anchor boxes and a neural network to generate a set
of regions and locate potential objects. The class loss is Log loss
of the object and not object classes. The regression loss is a
robust loss function. The class and regression losses are labeled

as 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟, respectively. The loss function for anchor is the
following:

 𝐿𝐿 = 1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

∑ 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖∗)𝑖𝑖 + 𝜆𝜆 1
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟

∑ 𝑝𝑝𝑖𝑖∗𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖∗)𝑖𝑖 , (1)

where 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑖𝑖∗𝜖𝜖{0,1} are the probabilities of the 𝑖𝑖𝑡𝑡ℎanchor and
the ground truth, respectively. Ground truth 𝑝𝑝𝑖𝑖∗ is only 1 if the
𝑖𝑖𝑡𝑡ℎanchor is positive. The anchor and ground truth bounding box
coordinates are represented by the 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑖𝑖∗, respectively. 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐
and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 are normalized with N values. Once the objects were
located, then they were classified after applying ROI Pooling.
This is faster than using a Selective Search approach to locate
potential objects.

B. RetinaNet
RetinaNet [2] has a ResNet backbone followed by a Feature

Pyramid Network (FPN). The model in our research specifically
used ResNet50. FPN is used to extract features by creating
feature maps at several scales. After FPN is applied, RetinaNet
uses subnetworks to locate and classify predictions of anchor
boxes. RetinaNet uses the focal loss function, which uses a
focusing parameter to increase loss for predictions with a
smaller probability [10].

C. YOLOv5
YOLOv5 [3] can be characterized by its backbone, neck, and

head. The backbone is CSPDarknet53 [11] with Cross Stage
Partial connections (CSP) [12], [13]. The neck is Spatial
Pyramid Pooling Fusion (SPPF) [14] and CSP-Path Aggregation
Network (CSP-PAN) [15], [12]. SPPF comes from Spatial
Pyramid Pooling (SPP) [16], which removes the need for fixed
input image sizes. However, SPP is slower than SPPF.
Individually, CSP reduces expensive computations and PAN
preserves localization information to improve instance

Figure 1. An annotated 1,500 pixel squared training image from
VisDrone2019 [6] dataset. Examples from eight of the ten classes are
shown in the yellow bounding box – pedestrian, bicycle, can, van, tricycle,
awning-tricycle, and motor.

segmentation. There is an output head and loss function for
bounding boxes, objectness, and class separately. Objectness
loss uses Binary Cross Entropy (BCE) loss, class loss also uses
BCE loss, and location loss uses Complete Intersection over
Union (CIOU) loss [17]. BCE for m classes and n predictions is:

 𝐵𝐵𝐵𝐵𝐵𝐵 = − 1
𝑛𝑛
∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖))𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 , (2)

where 𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖) is the probability of class j. CIOU for two
detection boxes a and b is:

 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎,𝑏𝑏) = 1 − 𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎, 𝑏𝑏) + 𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡(a, b)2/𝑐𝑐2 + 𝛼𝛼 (3)

where dist(a,b) is the Euclidean distance, c is the length of the
diagonal of the smallest box covering both a and b, and α is the
aspect ratio.

D. Proposed Stacked Generalization Models
1) Creating the Meta-dataset
The predictions from level-0 object detection models were

used to train the meta-models and test the proposed Stacked
Generalization models. First, datasets to train meta-regression
models were created, which is shown in the orange text boxes in
Figure 2. The predictions from the level-0 models and the
ground truths of the training dataset were first converted into
tables. The level-0 tables contained the four coordinates of
bounding boxes, the classification, the image number, the
confidence, and the model as its features. Next, each ground
truth in each image was paired with the closest prediction from
each level-0 model. To select the closest prediction to a ground
truth, the prediction had the same classification and the highest
Intersection over Union (IOU) with that ground truth. IOU is a
ratio between two bounding boxes that measures their
overlapping area to their total area. If there was no prediction
from any level-0 model that was paired with a ground truth, then
that ground truth was not used in training. If there was at least
one prediction paired with a ground truth, then a null prediction
was used as any missing prediction from the other level-0
models. Each ground truth is left with a group of predictions
from each level-0 model. To replace the null(s) in each group,
the prediction closest to its ground truth is used. After removing
the duplicates, a meta-dataset is created with the four

coordinates of the ground truth and each level-0 bounding box,
the confidence of each level-0 prediction, and IOU between
every two level-0 predictions to measure how close the
predictions are to each other.

2) Training the Level-1 models
The meta-dataset was used to train level-1 models to predict

each coordinate of a bounding box, which is why regressors
were trained. However, the distribution of objects between the
ten classes is highly skewed, so the predicted class of each
bounding box is not predicted. To predict the coordinates, four
level-1 models were used to predict one coordinate each. This
means the meta-dataset was split into four meta-datasets. For
example, the meta-dataset to train a level-1 model to predict the
Y-min coordinate used the Y-min coordinates of each level-0
model, the confidence scores, and the IOUs as its features.

These four meta-datasets are used to train four XGBoost
level-1 models or four MLP level-1 models, which is shown in
the purple and teal text boxes of Figure 2. Four-fold cross
validation was used to find the number of trees, the depth of each
tree, and the learning rate to provide the best results of the
XGBoost level-1 models. Each MLP had two fully connected
layers and an output layer of one node. The number of nodes in
the first layer was one plus the number of features in the meta-
dataset since the more level-0 models there were, the more
features there were. The Mean Squared Error (MSE) was used
to determine the best time to stop training, which is further
explained in the next section. The MSE for n datapoints is
defined as:

 𝑀𝑀𝑀𝑀𝐵𝐵 = 1
𝑛𝑛
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤��

2𝑛𝑛
𝑖𝑖=1 , (4)

where Y are the ground truths and Y hat are the predicted
coordinates.

3) Testing the Stacked Generalization Models
To test the resulting SG models after training, the test meta-

dataset is created by pairing each level-0 prediction to every
other level-0 prediction instead of the ground truth. The resulting
meta-dataset was split similarly to the training meta-dataset.
After the coordinate outputs were combined, duplicates were

Figure 2. System pipeline of one of the eight proposed Stacked Generalization Model that combined FRCNN-s + RetinaNet-s + YOLOv5s-s, where “-s”
stands for the VisDrone-split dataset for which the level-0 models are trained on. The objects in the input images are predicted by the level-0 models as
shown in the blue, light yellow, and light red text boxes. The predictions then grouped and used to create four meta-datasets as shown in the deeper yellow
text boxes. These four meta-datasets are used to train four level-1 meta-regressors to predict one bounding box coordinate each, which is shown in the purple
and teal text boxes. The last two text boxes show combining the coordinate prediction to get the final set of predictions.

removed since many of the same predictions were in multiple
groups. The final set of predictions could then be used to
calculate the metrics. Figure 2 shows the specific SG, FRCNN-
s + RetinaNet-s + YOLOv5s-s, which is one of the eight
proposed SG models.

V. EXPERIMENT SETUP
To perform the SG experiments, certain hardware and

software was required, object detection metrics needed to be
understood, and the level-0 and level-1 model parameters
needed to be set up to be trained.

A. Hardware and Software
The three level-0 models and all the SG experiments were

trained using a NVIDIA GeForce RTX 3060 with 6 GB of
dedicated memory. The application to run the experiments was
Jupyter Notebook. To train the level-0 models on a custom
dataset required an API or set of libraries, a dataset format, and
file type for the dataset. This also includes a preferred or
required operating system. The two file types for object
detection used were text for YOLOv5s and JSON for FRCNN
and RetinaNet. The format for the annotations in JSON files is
given at the official COCO website [18]. The coordinate format
that VisDrone provided was “X center, Y center, width, height.”
However, the level-0 models required the “X min, Y min, X max,
Y max,” coordinate format. These box coordinates were in pixels
for FRCNN and RetinaNet and normalized for YOLOv5s. The
meta-datasets to train the level-1 models were set up using a
CPU.

B. Metrics
The metric, average precision (AP), measures the prediction

accuracy of a single class object detection model. After ordering
each prediction by its confidence score, the precision and recall
values are calculated after each prediction. Each set of values
creates an (x, y) point to create the precision-recall curve, and
the area under the precision-recall curve is the AP, which is
detailed in [19]. The mean AP (mAP) is the result of finding the
AP for each class separately in a multiclass model, then
averaging the results. One of the metrics used in this research
was mAP with a 50% Intersection over Union (IOU) threshold
(mAP50), which means that the IOU of a true positive prediction
and a ground truth is more than 50%. The other metric used was
mAP with a 50:5:95% IOU threshold (mAP). This metric is
calculated by averaging all the mAPs from an IOU of 50% to
95% with increments of 5%. The COCO website [20] states that
mAP is the best metric to determine performance on COCO, so
mAP was the priority over mAP50 to determine the best model
in this research.

C. Level-0 Model Parameter Setups
The set of object detection models that were trained were

YOLOv5s [3], Faster R-CNN (FRCNN) [1], and RetinaNet [2].
Training the YOLOs required annotations in text files as in the
original dataset, but each box coordinate was normalized.
Training YOLOv5s on VisDrone-split used the Adam optimizer
and a learning rate of 0.005 or 0.0025. FRCNN and RetinaNet
both models required the annotations in JSON files. They
trained for at least 10,000 iterations each once loss seemed to
flatten sufficiently. Before training on a custom dataset, the
dataset was registered to be accessed, the model weights were

initialized, and the parameters were set. Training FRCNN and
RetinaNet on VisDrone-split used default parameters with a
learning rate of 0.002 or 0.001. After training, a 0.1 confidence
threshold provided optimum results.

D. Level-1 Model Parameter Setups
As was explained in part C of Section IV, fourfold cross

validation was used to train XGBoost meta-regressors and two
fully connected layers were used to create the MLP meta-
regressors. For XGBoost, the hyperparameters to generate the
best results are about 150 to 250 trees, a max depth of four, five,
or eight for each tree, and a learning rate of 0.05 for each
coordinate level-1 model. To find the best combination of three
hyperparameters, GPU was used to speed up training. For each
MLP level-1 model, an Adam optimizer, a learning rate of
0.001, and a batch size of 128 was used. Each MLP ran for a
maximum of 100 with ten epochs of early stopping based on the
lowest MSE. To determine the best time to stop, one fourth of
the training dataset was used as a validation dataset. Once MSE
of the validation dataset did not decrease after ten epochs, then
the epoch with the lowest validation MSE was used as the final
MLP coordinate model. To run for a maximum of 100 epochs, a
GPU was also used to speed up training.

Table 1 shows the average runtime of combining two and
three level-0 models based on what meta-regressor was used in
the SG model. The time is from grouping the level-0 predictions
to getting the results to an SG model. There is only one SG
model with three level-0 models using either XGBoost or MLP,
so its runtime is what is shown in the table. However, the
average runtime of all the of two level-0 models for each meta-
model is taken. Clearly there is a longer runtime for more level-
0 models being combined. There is also a longer runtime from
using an XGBoost to MLP level-1 model. The next section
shows the SGs with MLP results are worth the additional
runtime.

VI. RESULTS AND DISCUSSION
The eight experiments done included four SG experiments

using XGBoost level-1 models and four SG experiments using
MLP level-1 models. The four experiments using each type of
level-1 model came from the four combinations of FRNN,
RetinaNet, and YOLOv5s. The MLP SG models are consistently
more accurate than their XGBoost counterparts.

A. Level-0 Models
The set of level-0 models are Faster R-CNN (FRCNN),

RetinaNet, and YOLOv5s trained on VisDrone-split shown in
both Table II, where “-s” is for models trained on VisDrone-
split. The metric results of YOLOv5s trained on VisDrone and
VisDrone-split were similar and the results of FRCNN trained
on VisDrone-split were significantly better than trained on
VisDrone. So, experiments were done with level-0 models

TABLE I. SG MODEL AVERAGE RUNTIME IN MINUTES BASED ON THE
LEVEL-1 MODEL AND NUMBER OF LEVEL-0 MODELS

Number of Level-0 Models 2 3
XGBoost SG Runtime (min) 39 66

MLP SG Runtime (min) 45 71

trained on VisDrone-split only. Since the same level-0 model
predictions are used in both XGBoost and MLP SG models, the
results of the level-0 models are shown in Table II.

B. XBGoost Stacked Generalization Models
The set of three level-0 models were stacked to create four

combinations of input to XGBoost. The XGBoost meta-learners
that trained on the output of level-0 models were tested on
VisDrone-split. Table II shows the average mAP50, average
mAP, and mAP per class of the SG models with XGBoost level-

1 models trained on each set of level-0 models and trained on
VisDrone-split. The most accurate XGBoost SG model from
Table II according to mAP of 0.242 came from FRCNN-s +
RetinaNet-s + YOLOv5s-s.

All XGBoost SG models on VisDrone-split improved their
corresponding level-0 models when measuring mAP, but the SG
model that improved its level-0 models the most was FRCNN-s
+ RetinaNet-s. FRCNN-s + RetinaNet-s may have improved the
most because the level-0 metrics were so close. However, it

TABLE II. Level-0 Models and Proposed MLP and XGBoost based SG MODELS’ MAP PER CLASS AND MAP50

Method mAP50 mAP pedes-
trian

people bicycle car van truck tricycle awning-
tricycle

bus motor

Level-0 Models

FRCNN 0.304 0.168 0.133 0.087 0.023 0.479 0.237 0.173 0.107 0.057 0.257 0.127

FRCNN-s 0.380 0.209 0.245 0.177 0.095 0.513 0.247 0.148 0.135 0.051 0.265 0.216

RetinaNet-s 0.382 0.214 0.215 0.161 0.106 0.534 0.280 0.165 0.144 0.059 0.259 0.221

YOLOv5s 0.413 0.240 0.259 0.161 0.086 0.624 0.327 0.174 0.152 0.077 0.307 0.236

YOLOv5s-s 0.415 0.233 0.237 0.159 0.094 0.569 0.343 0.167 0.136 0.072 0.324 0.233

Proposed XGBoost SG Models

FRCNN-s +
RetinaNet-s

0.398 0.227 0.239 0.178 0.113 0.541 0.289 0.178 0.152 0.063 0.287 0.233

RetinaNet-s +
YOLOv5s-s

0.412 0.238 0.233 0.165 0.110 0.563 0.341 0.186 0.147 0.069 0.325 0.240

FRCNN-s +
YOLOv5s-s

0.423 0.241 0.252 0.181 0.115 0.554 0.325 0.182 0.153 0.074 0.324 0.246

FRCNN-s +
RetinaNet-s +
YOLOv5s-s

0.420 0.242 0.250 0.183 0.115 0.557 0.329 0.188 0.160 0.069 0.320 0.249

Proposed MLP SG Models
FRCNN-s +
RetinaNet-s

0.398 0.230 0.244 0.181 0.115 0.545 0.291 0.178 0.153 0.064 0.289 0.237

RetinaNet-s +
YOLOv5s-s

0.413 0.240 0.240 0.169 0.111 0.566 0.343 0.187 0.149 0.069 0.324 0.243

FRCNN-s +
YOLOv5s-s

0.423 0.242 0.255 0.184 0.115 0.558 0.326 0.183 0.153 0.073 0.322 0.248

FRCNN-s +
RetinaNet-s +
YOLOv5s-s

0.421 0.244 0.255 0.187 0.117 0.559 0.332 0.187 0.161 0.069 0.325 0.251

Note: The “-s” means which level-0 models were trained on VisDrone-split. Bold values are the most improved class per method and the bold method is
the best performing model. The green and blue cells show the highest metrics.

Figure 3. mAP50 and mAP metric comparison between the level-0 models and proposed MLP SG models. The green and red boxes show the positive and
negative percent changes between each SG model and their corresponding level-0 model with the highest metric. For example, in case of FRCNN-s +
RetinaNet-s, the mAP50 percent change is from 0.382 for RetinaNet-s to 0.398 and the mAP percent change is from 0.214 to 0.230, we take the higher of the
two individual corresponding models the RetinaNet-s and the FRCNN-s results to compute the percentage change in SG model.

wasn’t always the case that the farther apart the metrics between
the level-0 models, the worse the percent change in the level-1
model metrics. When measuring mAP50, a prediction is a true
positive if it has an IOU with a ground truth of at least 50%. The
true positives must have sufficiently high IOUs to keep up with
the increasing IOU thresholds when measuring mAP. The
RetinaNet-s + YOLOv5s-s mAP50 metric may not have
improved from the mAP50 metrics of its level-0 models because
the level-0 true positive predictions were removed during the
preprocessing phase and the level-1 model decreased the
prediction IOUs with the ground truth from above 50% to below
50%.

C. Multilayer Perceptron Stacked Generalization Models
The set of three level-0 models were stacked to create four

combinations of input to Multilayer Perceptron (MLP); the same
four as with XGBoost. The MLP SG models that trained on the
level-0 models were tested on VisDrone-split. Table II shows
the average mAP50, average mAP, and mAP per class of the SG
models with MLP level-1 models trained on each set of level-0
models trained on VisDrone-split. The best MLP SG model
results from Table II according to mAP of 0.244 again came
from FRCNN-s + RetinaNet-s + YOLOv5s-s.

Similar to the XGBoost SG models, these MLP SG models
tested on VisDrone-split improved on all the combinations of
their corresponding level-0 models. The most improved level-1
model was FRCNN-s + RetinaNet-s as shown in Figure 3,
whose every class mAP, besides pedestrian, had a positive
percent change. The percent change for each class was
calculated from the best class metric from its level-0 models.

VII. CONCLUSION AND FUTURE WORK
Eight SG models were proposed in this paper. The results of

the previous section showed that every proposed SG model
improved upon their corresponding state-of-the-art level-0
models, so an SG model was the best performing model using
either XGBoost or MLP level-1 models. The most improved SG
model was FRCNN-s + RetinaNet-s with MLP, whose mAP
improved 7.48% from RetinaNet. FRCNN-s + RetinaNet-s +
YOLOv5s-s with MLP was the model with the highest mAP,
whose mAP50 and mAP were 0.421 and 0.244, respectively.
Furthermore, their mAP improved 4.72% from YOLOv5s.
Thus, FRCNN-s + RetinaNet-s + YOLOv5s-s is the best
performing of all the proposed SG models.

Since meta-learning improved every object detection model
using SG, future work would include using meta-learning with
SG with larger and more accurate object detection models to test
if better performing models can still be improved upon. Other
methods can also be used to improve object detection models by
combining their predictions without meta-learning. The same
steps can be used to create the meta-datasets of predictions, but
instead of meta-learning, a non-meta-learning method can be
applied. One such method could be Decision Fusion [8], which
combines the predictions of multiple models to create a subset
of predictions more accurate than the individual models. This
can be used to test how meta-learning performs compared to
non-meta-learning methods.

REFERENCES

[1] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal Networks," in
Advances in Neural Information Processing Systems, 2015.

[2] T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal Loss for
Dense Object Detection," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 42, no. 2, pp. 318-327, 2020.

[3] G. Jocher, A. Chaurasia, J. Borovec, A. Stoken, Y. Kwon, J. Fang and
e. al, "yolov5," [Online]. Available:
https://github.com/ultralytics/yolov5. [Accessed Nov 2022].

[4] J. Redmon and A. Farhadi, YOLOv3: An Incremental Improvement,
arXiv:1804.02767, 2018.

[5] X. Zhou, D. Wang and P. Krähenbühl, Objects as Points,
arXiv:1904.07850, 2019.

[6] P. Zhu, L. Wen, D. Du, X. Bian, H. Fan, Q. Hu and e. al, "Detection
and tracking meet drones challenge," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7380-7399,
2022.

[7] B. Liu, H. Luo, H. Wang and S. Wang, "YOLOv3_ReSAM: A Small-
Target Detection Method," Electronics, vol. 11, no. 10, 2022.

[8] J. Xu, Y. Li and S. Wang, "AdaZoom: Towards Scale-Aware Large
Scene Object Detection," IEEE Transactions on Multimedia, 2022.

[9] D. Du, P. Zhu, L. Wen, X. Bian, H. Lin, Q. Hu and e. al, "VisDrone-
DET2019: The Vision Meets Drone Object Detection in Image
Challenge Results," in 2019 IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW), 2019.

[10] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li and e. al, "Generalized
Focal Loss: Learning Qualified and Distributed Bounding Boxes for
Dense Object Detection," in Advances in Neural Information
Processing Systems, 2020.

[11] A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, YOLOv4: Optimal
Speed and Accuracy of Object Detection, arXiv:2004.10934, 2020.

[12] C.-Y. Wang, L. H.-Y. Mark, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh and
I.-H. Yeh, "CSPNet: A New Backbone that can Enhance Learning
Capability of CNN," in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW),
2020.

[13] J. Terven and D. Cordova-Esparza, A Comprehensive Review of
YOLO: From YOLOv1 and Beyond, arXiv:2304.00501, 2023.

[14] "Ultralytics YOLOv5 Architecture," 2023. [Online]. Available:
https://docs.ultralytics.com/yolov5/tutorials/architecture_description/.
[Accessed Sep 2023].

[15] S. Liu, L. Qi, Q. Haifang, J. Shi and J. Jiaya, "Path Aggregation
Network for Instance Segmentation," in Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[16] K. He, X. Zhang, S. Ren and J. Sun, "Spatial Pyramid Pooling in
Deep Convolutional Networks for Visual Recognition," in Computer
Vision – ECCV 2014, 2014.

[17] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye and D. Ren, "Distance-IoU
Loss: Faster and Better Learning for Bounding Box Regression," in
The AAAI Conference on Artificial Intelligence (AAAI), 2020.

[18] "Data format," [Online]. Available: https://cocodataset.org/#format-
data. [Accessed Jan 2023].

[19] R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto and E. A. B. da
Silva, "A Comparative Analysis of Object Detection Metrics with a
Companion Open-Source Toolkit," Electronics, vol. 10, no. 3, 2021.

[20] "Detection Evaluation," [Online]. Available:
https://cocodataset.org/#detection-eval. [Accessed Jan 2023].

	I. Introduction
	II. Related Work
	III. Dataset Description
	A. VisDrone2019-DET
	B. VisDrone-split

	IV. Research Methodology
	A. Faster RCNN
	B. RetinaNet
	C. YOLOv5
	D. Proposed Stacked Generalization Models
	1) Creating the Meta-dataset
	2) Training the Level-1 models
	3) Testing the Stacked Generalization Models

	V. Experiment Setup
	A. Hardware and Software
	B. Metrics
	C. Level-0 Model Parameter Setups
	D. Level-1 Model Parameter Setups

	VI. Results and Discussion
	A. Level-0 Models
	B. XBGoost Stacked Generalization Models
	C. Multilayer Perceptron Stacked Generalization Models

	VII. Conclusion and Future Work
	References

