
Stacking and Voting Ensemble Models for Improving
Food Image Recognition

Suhas Suresh
Department of Computer Science

California State University
Northridge, CA, USA

suhas.suresh.737@my.csun.edu

Abhishek Verma
Department of Computer Science

California State University
Northridge, CA, USA

abhishek.verma@csun.edu

Abstract— Food image recognition has drawn much attention

recently because of its potential to transform the food business by
automating food identification and streamlining the ordering and
delivery process. One of the significant challenges in developing a
food image recognition system is the high variability in the
appearance of food items. The primary objective of this research
is to build a food image recognition system based on deep learning.

We propose two majority voting ensemble models, which
outperform their state-of-the-art level-0 CNN models,
EfficientNetV2S, InceptionV3, and Fusion – LSTM +
InceptionV3. Furthermore, we propose seven meta-learner
stacking models based on the three level-0 models. The best
performing stacking model was the SVM linear stacking model
and achieved 93.1% classification accuracy on the challenging
Food-101 dataset. It improved upon the three level-0 models and
the two voting ensemble models. MLP stacking model also
improved upon the level-0 models and the voting ensemble models.

Keywords— deep learning, Food-101, InceptionV3,
EfficientNetV2S, stacking, majority voting, meta-learner.

I. INTRODUCTION
Automated methods for food image recognition have grown

in relevance with conceivable applications in nutrition analysis,
meal journaling apps, nutritional inspection, and other areas [1].
Furthermore, leveraging technology to manage one's diet ties to
the increased focus on observing a healthy lifestyle.

The last several years have witnessed a surge in the
dissemination of food photos due to the widespread use of cell
phones and social media. However, human evaluation and
classification are severely hampered by the enormous quantity
of food photos uploaded online and hence the need to design
automated systems that could recognize food images with high
accuracy and speed. Previously, a unique technique was
employed to mine discriminative parts utilizing Random
Forests. This allowed for the simultaneous mining of parts for
all classes and the transfer of knowledge across them [25].

More recent studies have used Convolutional Neural
Networks (CNN) to detect food in images [2]. A CNN is a
multiple-layered neural network that has a special architecture
that is intended to accurately predict the output by extracting
progressively more sophisticated elements from the data at each
layer. There is room for improvement in accuracy of the CNN
models for food image recognition, especially when dealing

with images with complex backgrounds [3]. Some of the other
challenges are high variability in the appearance of food items,
occlusion, and different illumination conditions. There are few
guarantees regarding the capacity of the model to generalize
given the size of the training loss in today's highly
overparameterized models, sharpness-aware minimization
(SAM) optimizer was proposed to address this issue [26].

Our paper’s main goal is to use deep learning techniques to
create a food image recognition model that can categorize foods
from images with high accuracy and speed. We propose seven
stacking models and two voting ensemble models that improve
upon their state-of-the-art level-0 models in terms of accuracy.
Furthermore, we compare the runtime of various proposed
models. The rest of the sections of this paper are structured as
follows. Section II focuses on the prior relevant works while
section III provides details of the dataset. Section IV covers the
proposed models. Section V and VI discuss experiment setup
and present the findings of the experiments respectively and
section VII discusses conclusion and future work.

II. RELATED WORK
In recent years, there has been much interest in food image

recognition research. For this objective, several deep learning
models have been proposed, each with its unique advantages and
disadvantages [4][23][24]. This section reviews a few of the
related studies that have been done in food image recognition.
The early studies on this subject relied on manually created
features, such as color histograms and texture data, which were
extracted from food images and then categorized using machine
learning techniques. However, these approaches had difficulties
in accurately extracting the intricate and varied features found in
food images.

CNNs for food image recognition has been the center of
research in recent years. One of the first such works was Kawano
and Yanai’s [2] deep CNN model for food image classification
on the Food-101 dataset [5]. It used a modified version of the
AlexNet [18] architecture and achieved a classification accuracy
of 62.3%. Another architecture named VGGNet [6] achieved
high accuracy on the Food-101 dataset. It used a number of 3x3
convolutional filter layers, followed by max pooling.

Residual network (ResNet) architecture was developed to
address the issue of vanishing gradients during training and was
first presented by He et al. [7]. On several benchmark datasets,

including Food-101 [5] and UECFood100 [8], it has been
demonstrated that this architecture achieved good accuracy [2].
Another well-known CNN architecture, Inception, was first
presented by Szegedy et al. [9]. It can capture both the local and
global features in the input image since it has numerous layers
of filters with different widths. On a number of benchmark
datasets, Inception has demonstrated high accuracy [9]

Mixup [10] is a data augmentation method that was applied
to the recognition of food images. Chen et al. [11] introduced a
CNN-based model that combined local and global food image
characteristics, leading to enhanced results in food recognition.
Random Erasing [12] is another data augmentation method
where a rectangular patch from the input image is randomly
erased and replaced with random noise. Augmented input data
used to train a self-supervised model achieved a Top-1 accuracy
of 76.5%, matching the performance of the ResNet-50 model. It
outperformed AlexNet with fewer labels, achieving a Top-5
accuracy of 85.8% when fine-tuned on just 1% of the labels [13].

Foret et al. [14] combined foreground objects with backdrop
sceneries to create synthetic food images. They showed that by
training CNN models on many combinations of actual and fake
data, the accuracy of recognition was increased. Estimating
portion sizes or calorie content is another facet of food image
recognition.

 In summary, deep learning approaches, particularly CNNs,
have greatly improved the accuracy and robustness of food
image recognition systems. Transfer learning, data
augmentation, and multi-task learning have been employed to
tackle challenges associated with limited annotated datasets and
portion size estimation. While much progress has been made,
there is a need for further improvement in developing more
efficient and accurate food image recognition models.

III. DATASET DESCRIPTION
We perform experiments on the Food-101 [5] dataset, which

has 101 distinct food classes. The dataset was first made public
in 2014 and was developed by the Computer Vision Laboratory
at ETH Zurich. Each food class has 1,000 images. There are a
total of 101,000 images. The sample images from the dataset are
shown in Figure 1.

The food images were manually collected from various
online sources to ensure that they included a wide range of food
categories, including fruits, vegetables, meats, cereals, sweets,
etc. The culinary categories include more specialized categories
like tiramisu, fish & chips, and baby back ribs in addition to
general categories like pizza, sushi, hamburgers, and apple pie.
The images are diverse sizes, aspect ratios, quality, and
illumination levels. Some images have several different food
items, and some are partially obscured by other things. The
images are divided into training and validation. There are around
25,500 images in the validation set and around 75,500 images in
the training set.

IV. RESEARCH METHODOLOGY

A. Data Pre-Processing
The success of the final model depends heavily on the data

pre-processing stage. We resized all images to the same
dimension to fit the input size of the deep learning model. The
pixel intensity values are scaled between 0 and 1 to normalize
the images. Normalizing the images speeds up learning and
lessens the chance of gradients bursting or vanishing during
training. We also performed batch normalization to speed up and
stabilize the training of deep convolutional neural networks.

B. Convolutional Neural Networks (CNN)
A CNN is a deep learning method that decodes images by

using a layer-by-layer neural network that has been specifically
designed for the task. It basically consists of three types of
layers, convolutional, pooling, and fully connected layers. A
convolutional network's top layer is called the convolutional
layer. The fully connected layers usually come last. With each
additional layer, a CNN grows more intricate and can recognize
more parts of the image. The first few layers focus on the most
fundamental elements, like colors and borders. CNN starts to
identify the item's larger pieces or characteristics as the visual
input moves through the layers, eventually recognizing the
target object. Regularization [29] and batch normalization
[27][28][30] technique is utilized to stabilize the training.
Dropout is added to the fully connected layers to reduce
overfitting and speed up convergence. The transfer learning
technique makes use of a model that has already been trained
for classification and recognition to further train the model on
a smaller domain specific dataset.

C. InceptionV3
The InceptionV3 [9] deep convolutional neural network

performs image categorization tasks. The architecture comprises
of connected layers that use several activation functions. The
main principle of the InceptionV3 design is to employ several
inception modules to make the network learn features or
characteristics at various spatial scales. These modules consist
of several parallel convolutional layers with various filter sizes,
a pooling layer, and a concatenation of the outputs from the
parallel layers.

The InceptionV3 model requires an input size of 299 x 299
pixels, we scale all images to that size. We processed the images

Figure 1. Sample images of several different food categories from the
Food-101 dataset [5].

in batches during training using data generators. Data generators
allow to train the model on enormous datasets that won't directly
fit in memory while using less memory overall. We used
pretrained weights and transfer learning to train the model on
Food-101 dataset. The InceptionV3 model's top layers were
partially unfrozen, and the entire model was retrained using a
slower learning rate.

D. EfficientNetV2S
One of the most effective convolutional neural networks

(CNN) models is EfficientNet [21]. EfficientNetV2 [22] takes
one step further than EfficientNet. Its major objective was to
increase parameter efficiency and training speed, which is
several times smaller and far faster than the earlier version. We
used the pretrained EfficientNetV2S [22] model to train on Food
101 dataset. This model is smaller, quicker to train, and scales
well to growing data without sacrificing accuracy in comparison
to prior variants. It provides a more effective and progressive
learning technique that adaptively modifies both regularization
and image size. This model uses both MBConv and Fused-
MBConv layers, to optimize high accuracy and training speed.

E. Fusion - LSTM+ InceptionV3
This model was originally designed to perform multimodal

classification of the same concept using both textual and visual
input [20]. Two different models are trained and ensembled
using early fusion technique in conjunction with ensemble
strategy to implement a multi-modal classifier that outperforms
state-of-the-art models on relevant datasets.

We used an adaptation of this model designed for image
classification. It is based on a CNN model constructed on the
architecture of InceptionV3. The last layer comprises 128 units,
which is a long short term memory (LSTM) layer, whereas the
other parallel final layer, which is a dense layer, comprises 128
units as in the Inception model. The outputs of those layers are
passed into the concatenation layer. A 256-unit dense layer and
a rectified linear unit (ReLU) activation function are added after
concatenation. Lastly, the classification layer is a dense layer
with 101 units and a SoftMax activation to work with the Food-
101 dataset. This layer outputs the final classification results of
the expected category of the given inputs.

F. Proposed Majority Voting Ensemble Models
Majority voting can be applied to enhance model

performance and could produce results that are superior to those

of any one model utilized alone. The way a voting ensemble
operates is by aggregating the results of forecasts from various
models, the input is then assigned to the majority class. We
propose soft majority voting and hard majority voting ensemble
models that combine the predictions of level-0 models:
InceptionV3, EfficientNetV2S, and Fusion-LSTM +
InceptionV3. Figure 2 shows the architecture of the majority
voting ensemble model.

i. Proposed hard majority voting ensemble model

A hard voting model uses the mode of all the predictions
from various level-0 models to classify input data. Depending
on whether the weights assigned to the various level-0 models
are equal or not, the majority vote is regarded differently. For
our proposed model we assume equal weights.

Suppose there exists three level-0 models. The class labels
for the predicted class for certain input data for each of the three
level-0 models is [1, 1, 0]. If all the models have equal weights,
the mode of predictions is chosen. As a result, class 1 is
predicted for the specific input data because the mode of [1, 1,
0] is 1.

ii. Proposed soft majority voting ensemble model

A soft voting model uses all the predictions from several
level-0 models in terms of probabilities to classify input data.
The weights assigned to each level-0 model are applied
accordingly. Each level-0 model first assigns a probability to
each class. The class with the highest overall probability is the
ensemble's prediction. As an illustration, suppose there are three
level-0 models, each trained to distinguish between images of
pizza and pancake. The image is predicted to be of a pancake
with a probability of 0.7 and a pizza with a probability of 0.3 by
the first level-0 model, a pancake with a probability of 0.4 and a
pizza with a probability of 0.6 by the second model, and a
pancake with a probability of 0.6 and a pizza with a probability
of 0.4 by the third model. The ensemble will predict the image
is of a pancake.

G. Proposed Meta-Learner Stacking Models
We propose seven different meta-learner stacking models

based on the three level-0 models discussed earlier. Figure 3
shows the architecture of the proposed meta-learner stacking
models.

Figure 2. Architecture of the proposed majority voting ensemble model.

Figure 3. Architecture of the proposed meta-learner stacking models.
Seven models are proposed based on seven different meta-learner
classifiers.

An ensemble meta-learner is referred to as stacked
generalization or simply stacking. It generalizes on data in a
stacked fashion. One advantage of stacking is that it could
outperform any single model in the ensemble by utilizing a
variety of effective models. To determine how the predictions
are combined from two or more underlying level-0 models, it
employs a meta-learner classifier, which learns whether each
member of the ensemble is to be trusted or not. In stacking, as opposed to bagging, the models are often unique and fitted to the

same dataset. Stacking leverages an individual model to learn to
integrate the results from level-0 models, as opposed to an order
of models that adjusts the findings of previous models.

V. EXPERIMENT SETUP
In this section, we discuss hardware and software setup and

machine learning model setup to train the deep learning models.
The Food-101 dataset is split randomly with 75% and 25% of
the images for training and validation, respectively.

A. Hardware and Software Setup
All the experiments in this research were carried out on an

Apple MacBook Air with an 8-core CPU, four performance
cores, four efficiency cores, a 16-core Neural Engine, and an
eight GB unified memory. Some of the experiments were
conducted on Google Colab. Python Jupyter notebook was used
to implement the code and visualize the results. TensorFlow [15]
and Keras [16] machine learning, deep learning, and Python
libraries were used for implementation. TensorFlow [15]
enables developers to experiment with novel optimizations and
training algorithms.

B. Pre-processing and Data Augmentation Setup
Exploratory data analysis of the dataset's images uncovered

certain issues. The images in the dataset range in size from 183
x 183 to more than 4,000 x 4,000. However, only 20% of the
images are smaller than 400 x 400 or larger than 973 x 973, with
50% of the images falling between 190 x 190 and 852 x 852. We
resized the images to 299 × 299. Random rotation was employed
coupled with a random horizontal flip to augment the dataset.

TABLE III. TOP-1 VALIDATION CLASSIFICATION ACCURACY PERCENT OF
META-LEARNER STACKING SVM LINEAR MODEL ON FOOD-101 DATASET

(TOP 20 CLASSES SORTED IN DESCENDING ORDER OF ACCURACY)

Classes Accuracy (%)
Chicken wings 100.0

Chicken quesadilla 100.0

Pizza 100.0

Chocolate cake 100.0

Donuts 99.9

Sushi 99.9

Breakfast burrito 99.8

Cheesecake 99.8

French fries 99.6

Garlic bread 99.5

Hamburger 99.4

Grilled cheese sandwich 99.3

Cup cakes 99.3

Caesar salad 99.2

Fried rice 99.2

Nachos 99.2

Apple pie 99.2

Pancakes 99.1

Hot dog 99.1

Ice cream 99.0

TABLE II. TOP-1 VALIDATION CLASSIFICATION ACCURACY PERCENT OF
SOFT MAJORITY VOTING ENSEMBLE MODEL ON FOOD-101 DATASET

(TOP 20 CLASSES SORTED IN DESCENDING ORDER OF ACCURACY)

Classes Accuracy (%)
Chicken wings 100.0

Pizza 100.0

Chicken quesadilla 99.9

Hamburger 99.9

Donuts 99.9

Cheesecake 99.8

Garlic bread 99.8

Cup cakes 99.7

Chocolate cake 99.6

Sushi 99.5

Caesar salad 99.5

French fries 99.4

Breakfast burrito 99.3

Grilled cheese sandwich 99.1

Hot dog 99.0

Pancakes 98.9

Nachos 98.8

Ice cream 98.7

Fried rice 98.5

Apple pie 98.5

TABLE I. TOP-1 VALIDATION CLASSIFICATION ACCURACY PERCENT OF
VARIOUS MODELS ON THE FOOD-101 DATASET

Models Accuracy (%)
Level-0 Models

InceptionV3 81.2

EfficientNetV2S 90.5

Fusion - LSTM + InceptionV3 92.2

Proposed Majority Voting Ensemble Models

Hard Majority Voting Model 92.4

Soft Majority Voting Model 92.7

Proposed Meta-learner Stacking Models

SVM RBF 90.2

KNeighbors 91.5

Random Forest 91.7

CatBoost 91.9

XGBoost 92.3

Multilayer Perceptron (MLP) 92.8

SVM Linear 93.1

C. Transfer Learning and Setup of Level-0 Models
Transfer learning is a machine learning strategy where a

learned model is used to train a new model for a different
problem domain. Knowledge is transferred between domains
using the pre-trained network. Training deeper neural networks
is more challenging and multiple deep learning applications take
advantage of transfer learning to train on smaller datasets.

Two pre-trained models, InceptionV3 and EfficientNetV2S,
that are originally trained on the ImageNet dataset [19], are
loaded for transfer learning. The Conv2D layer's input shape is
(299, 299, 3) to match the size of the input image. The output is
flattened to a 1D vector using the dense layer after the final max
pooling 2D layer and is then passed through fully linked Dense
layers with 128 neurons. There is a ReLU activation function in
the dense layer. Two dropout layers with a rate of 0.2 are
utilized, one before and one after the first dense layer, to avoid
overfitting. Finally, the model is built using a categorical cross-
entropy loss function. Stochastic gradient descent (SGD)
optimizer is used, which is an adaptive optimization technique
to find locally optimal weights. The model is tested using the
validation set after being trained for 10 epochs with a batch size
of 64. The model checkpoints for both models are saved in an
hdf5 file to evaluate and visualize results.

D. Proposed Majority Voting Ensemble Models Setup
Voting is implemented via the Scikit-learn [17] Python

machine learning package. The voting input is set to either hard
or soft. The predictions from three different level-0 models are
aggregated into an ensemble that casts votes. Each voting
ensemble model is tested repeatedly with a 10-fold cross-
validation method. This function receives an instance of the
model and returns the scores from 10-fold cross-validation
iterations. Next, each method's average performance is
calculated.

E. Proposed Meta-learner Stacking Models Setup
We used Scikit-learn library to implement stacking of three

level-0 or base models. The final estimator provides the level-1
model or meta-model. Cross-validation is used to prepare the
meta model. We use seven different meta learner classifiers at
level-1 namely Support Vector Machine (SVM) Linear kernel,
SVM Radial Basis Function kernel (RBF), KNeighbors,
Random Forest, XGBoost, CatBoost, Multilayer Perceptron
(MLP), and compare their results in the next section.

VI. RESULTS AND DISCUSSION

A. Results of Level-0 Models
All three level-0 models were trained on the ImageNet

dataset and the pre-trained model is trained on the Food-101
using the SGD optimizer and the parameter values LR = 0.0001,
batch size = 32, training ratio = 0.75, testing ratio = 0.25, and
epochs = 10. Table I shows the Top-1 classification accuracy
percent on the Food-101 dataset.

After training the InceptionV3 model for 10 epochs the
validation accuracy is 81.2%. The EfficientNetV2S model was
trained for 10 epochs and the validation accuracy is 90.5%. After
training the Fusion-LSTM+InceptionV3 model for 15 epochs
the validation accuracy is 92.2%, which is the highest of the
three level-0 models.

From Table IV it could be observed that the EfficientNetV2S
is quickest to train with fewest parameters and size on disk
compared to the other two level-0 models. Fusion –
LSTM+InceptionV3 has the highest accuracy, but it expectedly
has more parameters, higher size on disk, and larger total
training time.

(a)

(b)

Figure 4. (a) Training and (b) validation loss plot for Meta-learning Stacking Multilayer Perceptron (MLP) model on the Food-101 dataset.

TABLE IV. MODEL SIZE AND TRAINING TIME FOR LEVEL-0 MODELS ON
FOOD-101 DATASET

Model Parameter
Count

(million)

Size on
Disk (MB)

Epochs Total
Training

Time
InceptionV3 23.9M 92 10 7h 21m
EfficientNetV2S 21.6M 88 10 5h 2m
Fusion - LSTM
+ InceptionV3

110M 180 15 8h 3m

TABLE V. MODEL SIZE AND TRAINING TIME FOR META-LEARNING
STACKING MODELS ON FOOD-101 DATASET

Model Size on Disk (MB) Total Training Time
SVM RBF 68 6h 27m
KNeighbors 53 5h 45m
Random Forest 57 5h 13m
CatBoost 71 6h 11m
XGBoost 69 6h 02m
MLP 120 7h 57m
SVM Linear 77 6h 38m

B. Results of Proposed Majority Voting Ensemble Models
Table I shows the validation accuracies of hard voting and

soft voting models as 92.4% and 92.7% respectively. Both
voting models improved upon the level-0 models. As expected,
soft majority voting gave slightly better results. The
classification accuracy results of soft voting for the top 20
classes can be seen in Table II. Majority voting implementation
is computationally inexpensive.

C. Results of Proposed Meta-learner Stacking Models
Table I shows the validation accuracies of seven different

meta-learner stacking models. The best performing stacking
model was trained with SVM linear at 93.1%. Both SVM linear
and MLP models improved upon the voting models and level-0
models. XGBoost improved upon the all level-0 models and was
at par with the voting models. The accuracy results of best
performing meta-learner stacking SVM linear model for the top
20 classes can be seen in Table III. Figure 4 shows the training
and validation loss of MLP stacking model across 15 epochs of
training. Table V presents a comparison of the model size and
training time for the seven meta-learning stacking models.

VII. CONCLUSION AND FUTURE WORK
In this paper we proposed two majority voting ensemble

models, which outperformed their level-0 models. Furthermore,
we proposed seven meta-learner stacking models based on the
three level-0 models. The best performing stacking model was
the SVM linear stacking model that improved upon the three
level-0 models and the voting ensemble models. MLP stacking
model also improved upon the level-0 models and the voting
ensemble models. The models were trained on the challenging
Food-101 dataset, which has high variability in terms of food
images, varied illumination, and occlusion. Future work will
focus on fusing larger transformer models on bigger datasets
along with multi-class and multi-modal classification of food
images, which is an active and challenging area of research.

REFERENCES

[1] M. Wazumi, X. -H. Han, D. Ai and Y. -W. Chen, "Auto-recognition of

food images using SPIN feature for Food-Log system," 6th Int. Conf. on
Computer Sciences and Convergence Information Technology (ICCIT),
Seogwipo, Korea (South), 2011, pp. 874-877.

[2] K. Yanai and Y. Kawano, "Food image recognition using deep
convolutional network with pre-training and fine-tuning", IEEE Int.
Conf. on Multimedia & Expo Workshops (ICMEW), Turin, Italy, 2015.

[3] J. Huang, L. Qu, R. Jia and B. Zhao, "O2U-Net: A Simple Noisy Label
Detection Approach for Deep Neural Networks," 2019 IEEE/CVF Int.
Con. on Computer Vision (ICCV), Seoul, Korea (South), 2019, pp.
3325-3333.

[4] S. Mezgec and B. K. Seljak, "Using Deep Learning for Food and
Beverage Image Recognition," 2019 IEEE Int. Conf. on Big Data (Big
Data), Los Angeles, CA, USA, 2019, pp. 5149-5151.

[5] Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc. "Food-
101 - Mining Discriminative Components with Random Forests", 2014,
EECV (European Conf. on Computer Vision)

[6] K. Simonyan. and A. Zisserman. (2014) “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. arXiv preprint
arXiv:1409.1556

[7] Kaiming He & Zhang, Xiangyu & Ren, Shaoqing & Jian Sun. (2016).
“Deep Residual Learning for Image Recognition”. 770-778.
10.1109/CVPR.2016.90.

[8] Matsuda, Y. and Hoashi, H. and Yanai, K., "Recognition of Multiple-
Food Images by Detecting Candidate Regions", Proc. of IEEE Int. Conf.
on Multimedia and Expo (ICME)," 2012.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, & A.
Rabinovich. (2015). “Going deeper with convolutions”. In Proc.of the
IEEE Conf. on Computer Vision and Pattern Recognition (pp. 1-9).

[10] Z. Zhang, S. Xu, S. Cao, & S. Zhang. (2018). “Deep convolutional
neural network with mixup for environmental sound classification”. In
Pattern Recognition and Computer Vision: First Chinese Conf. PRCV
2018, Guangzhou, China, November 23-26, 2018, Proc. Part II 1 (pp.
356-367). Springer Int. Publishing.

[11] T. Chen, S. Kornblith, M. Norouzi and G.Hinton. “A simple
framework for contrastive learning of visual representations”. In Int.
Conf. on Machine Learning, pp. 1597–1607. PMLR, 2020.

[12] Z. Zhong, L. Zheng, G. Kang, S. Li, & Y. Yang. (2020, April).
“Random erasing data augmentation”. In Proc. of the AAAI
(Association for the Advancement of Artificial Intelligence) Conf. on
Artificial Intelligence (Vol. 34, No. 07, pp. 13001-13008).

[13] E.D. Cubuk, B. Zoph, J. Shlens, and Le, “Q. V. Randaugment: Practical
automated data augmentation with a reduced search space”. In Proc. of
the IEEE/CVF Conf. on Computer Vision and Pattern Recognition
Workshops, pp. 702–703, 2020.

[14] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. “Sharpness-aware
minimization for efficiently improving generalization”. In 9th Int. Conf.
on Learning Representations, ICLR, 2021.

[15] Abadi, Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).
TensorFlow: A system for large-scale machine learning. In 12th Symp.
on Operating Systems Design and Implementation (pp. 265–283).

[16] F. Chollet, & others. (2015). Keras. GitHub. Retrieved from
https://github.com/fchollet/keras.

[17] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12,
pp. 2825-2830, 2011.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification
with deep convolutional neural networks," Neural Information
Processing Systems, Lake Tahoe, NV, 2012, pp. 1097-1105.

[19] O. Russakovsky, J. Deng, H. Su, et al., "ImageNet Large Scale Visual
Recognition Challenge," Int. J. of Computer Vision, 2015.

[20] I. Gallo, G. Ria, N. Landro, and R. La Grassa, "Image and Text fusion
for UPMC Food-101 using BERT and CNNs," Int. Conf. on Image and
Vision Computing, New Zealand, Nov 2020, pages 1-6.

[21] M. Tan and Q. Le, "EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks," Proc. of the 36th Int. Conf. on
Machine Learning, PMLR 97:6105-6114, 2019.

[22] M. Tan and Q. Le, "EfficientNetV2: Smaller Models and Faster
Training," Proc. of Int. Conf. on Machine Learning, 2021.

[23] J. Zheng, Z. J. Wang and X. Ji, "Superpixel-based image recognition for
food images," 2016 IEEE Canadian Conf. on Electrical and Computer
Engineering (CCECE), Vancouver, BC, Canada, 2016, pp. 1-4.

[24] W. Zhang, D. Zhao, W. Gong, Z. Li, Q. Lu and S. Yang, "Food Image
Recognition with Convolutional Neural Networks," 2015 IEEE 12th Int.
Conf. on Ubiquitous Intelligence and Computing, Beijing, China, 2015,
pp. 690-693.

[25] L. Bossard, M. Guillaumin, L.Van Gool, “Food-101 – Mining
Discriminative Components with Random Forests”. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014.

[26] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. “Sharpness-aware
minimization for efficiently improving generalization”. In 9th Int. Conf.
on Learning Representations, ICLR, 2021.

[27] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In ICML (Int.
Conf. on Machine Learning, 2015.

[28] I. Gitman, and B. Ginsburg, “Comparison of batch normalization and
weight normalization algorithms for the large-scale image
classification,” arXiv preprint arXiv:1709.08145, 2017.

[29] P. Luo, X. Wang, W. Shao, and Z. Peng, “Towards understanding
regularization in batch normalization,” arXiv preprint
arXiv:1809.00846, 2018.

[30] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2018.
arXiv preprint arXiv:1607.06450, 2016.

	I. Introduction
	II. Related Work
	III. Dataset Description
	IV. Research Methodology
	A. Data Pre-Processing
	B. Convolutional Neural Networks (CNN)
	C. InceptionV3
	D. EfficientNetV2S
	E. Fusion - LSTM+ InceptionV3
	F. Proposed Majority Voting Ensemble Models
	G. Proposed Meta-Learner Stacking Models

	V. Experiment Setup
	A. Hardware and Software Setup
	B. Pre-processing and Data Augmentation Setup
	C. Transfer Learning and Setup of Level-0 Models
	D. Proposed Majority Voting Ensemble Models Setup
	E. Proposed Meta-learner Stacking Models Setup

	VI. Results and Discussion
	A. Results of Level-0 Models
	B. Results of Proposed Majority Voting Ensemble Models
	C. Results of Proposed Meta-learner Stacking Models

	VII. Conclusion and Future Work
	References

