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Abstract— Food image recognition has drawn much attention 

recently because of its potential to transform the food business by 
automating food identification and streamlining the ordering and 
delivery process. One of the significant challenges in developing a 
food image recognition system is the high variability in the 
appearance of food items. The primary objective of this research 
is to build a food image recognition system based on deep learning. 

We propose two majority voting ensemble models, which 
outperform their state-of-the-art level-0 CNN models, 
EfficientNetV2S, InceptionV3, and Fusion – LSTM + 
InceptionV3. Furthermore, we propose seven meta-learner 
stacking models based on the three level-0 models. The best 
performing stacking model was the SVM linear stacking model 
and achieved 93.1% classification accuracy on the challenging 
Food-101 dataset. It improved upon the three level-0 models and 
the two voting ensemble models. MLP stacking model also 
improved upon the level-0 models and the voting ensemble models. 

Keywords— deep learning, Food-101, InceptionV3, 
EfficientNetV2S, stacking, majority voting, meta-learner. 

I. INTRODUCTION  
Automated methods for food image recognition have grown 

in relevance with conceivable applications in nutrition analysis, 
meal journaling apps, nutritional inspection, and other areas [1]. 
Furthermore, leveraging technology to manage one's diet ties to 
the increased focus on observing a healthy lifestyle. 

The last several years have witnessed a surge in the 
dissemination of food photos due to the widespread use of cell 
phones and social media. However, human evaluation and 
classification are severely hampered by the enormous quantity 
of food photos uploaded online and hence the need to design 
automated systems that could recognize food images with high 
accuracy and speed. Previously, a unique technique was 
employed to mine discriminative parts utilizing Random 
Forests. This allowed for the simultaneous mining of parts for 
all classes and the transfer of knowledge across them [25]. 

More recent studies have used Convolutional Neural 
Networks (CNN) to detect food in images [2]. A CNN is a 
multiple-layered neural network that has a special architecture 
that is intended to accurately predict the output by extracting 
progressively more sophisticated elements from the data at each 
layer. There is room for improvement in accuracy of the CNN 
models for food image recognition, especially when dealing 

with images with complex backgrounds [3]. Some of the other 
challenges are high variability in the appearance of food items, 
occlusion, and different illumination conditions. There are few 
guarantees regarding the capacity of the model to generalize 
given the size of the training loss in today's highly 
overparameterized models, sharpness-aware minimization 
(SAM) optimizer was proposed to address this issue [26]. 

Our paper’s main goal is to use deep learning techniques to 
create a food image recognition model that can categorize foods 
from images with high accuracy and speed. We propose seven 
stacking models and two voting ensemble models that improve 
upon their state-of-the-art level-0 models in terms of accuracy. 
Furthermore, we compare the runtime of various proposed 
models. The rest of the sections of this paper are structured as 
follows. Section II focuses on the prior relevant works while 
section III provides details of the dataset. Section IV covers the 
proposed models. Section V and VI discuss experiment setup 
and present the findings of the experiments respectively and 
section VII discusses conclusion and future work. 

II. RELATED WORK 
In recent years, there has been much interest in food image 

recognition research. For this objective, several deep learning 
models have been proposed, each with its unique advantages and 
disadvantages [4][23][24]. This section reviews a few of the 
related studies that have been done in food image recognition. 
The early studies on this subject relied on manually created 
features, such as color histograms and texture data, which were 
extracted from food images and then categorized using machine 
learning techniques. However, these approaches had difficulties 
in accurately extracting the intricate and varied features found in 
food images.  

CNNs for food image recognition has been the center of 
research in recent years. One of the first such works was Kawano 
and Yanai’s [2] deep CNN model for food image classification 
on the Food-101 dataset [5]. It used a modified version of the 
AlexNet [18] architecture and achieved a classification accuracy 
of 62.3%. Another architecture named VGGNet [6] achieved 
high accuracy on the Food-101 dataset. It used a number of 3x3 
convolutional filter layers, followed by max pooling. 

Residual network (ResNet) architecture was developed to 
address the issue of vanishing gradients during training and was 
first presented by He et al. [7]. On several benchmark datasets, 



including Food-101 [5] and UECFood100 [8], it has been 
demonstrated that this architecture achieved good accuracy [2]. 
Another well-known CNN architecture, Inception, was first 
presented by Szegedy et al. [9]. It can capture both the local and 
global features in the input image since it has numerous layers 
of filters with different widths. On a number of benchmark 
datasets, Inception has demonstrated high accuracy [9]  

Mixup [10] is a data augmentation method that was applied 
to the recognition of food images. Chen et al. [11] introduced a 
CNN-based model that combined local and global food image 
characteristics, leading to enhanced results in food recognition. 
Random Erasing [12] is another data augmentation method 
where a rectangular patch from the input image is randomly 
erased and replaced with random noise. Augmented input data 
used to train a self-supervised model achieved a Top-1 accuracy 
of 76.5%, matching the performance of the ResNet-50 model. It 
outperformed AlexNet with fewer labels, achieving a Top-5 
accuracy of 85.8% when fine-tuned on just 1% of the labels [13]. 

Foret et al. [14] combined foreground objects with backdrop 
sceneries to create synthetic food images. They showed that by 
training CNN models on many combinations of actual and fake 
data, the accuracy of recognition was increased. Estimating 
portion sizes or calorie content is another facet of food image 
recognition. 

 In summary, deep learning approaches, particularly CNNs, 
have greatly improved the accuracy and robustness of food 
image recognition systems. Transfer learning, data 
augmentation, and multi-task learning have been employed to 
tackle challenges associated with limited annotated datasets and 
portion size estimation. While much progress has been made, 
there is a need for further improvement in developing more 
efficient and accurate food image recognition models. 

III. DATASET DESCRIPTION 
We perform experiments on the Food-101 [5] dataset, which 

has 101 distinct food classes. The dataset was first made public 
in 2014 and was developed by the Computer Vision Laboratory 
at ETH Zurich. Each food class has 1,000 images. There are a 
total of 101,000 images. The sample images from the dataset are 
shown in Figure 1. 

The food images were manually collected from various 
online sources to ensure that they included a wide range of food 
categories, including fruits, vegetables, meats, cereals, sweets, 
etc. The culinary categories include more specialized categories 
like tiramisu, fish & chips, and baby back ribs in addition to 
general categories like pizza, sushi, hamburgers, and apple pie. 
The images are diverse sizes, aspect ratios, quality, and 
illumination levels. Some images have several different food 
items, and some are partially obscured by other things. The 
images are divided into training and validation. There are around 
25,500 images in the validation set and around 75,500 images in 
the training set. 

IV. RESEARCH METHODOLOGY 

A. Data Pre-Processing 
The success of the final model depends heavily on the data 

pre-processing stage. We resized all images to the same 
dimension to fit the input size of the deep learning model. The 
pixel intensity values are scaled between 0 and 1 to normalize 
the images. Normalizing the images speeds up learning and 
lessens the chance of gradients bursting or vanishing during 
training. We also performed batch normalization to speed up and 
stabilize the training of deep convolutional neural networks. 

B. Convolutional Neural Networks (CNN) 
A CNN is a deep learning method that decodes images by 

using a layer-by-layer neural network that has been specifically 
designed for the task. It basically consists of three types of 
layers, convolutional, pooling, and fully connected layers. A 
convolutional network's top layer is called the convolutional 
layer. The fully connected layers usually come last. With each 
additional layer, a CNN grows more intricate and can recognize 
more parts of the image. The first few layers focus on the most 
fundamental elements, like colors and borders. CNN starts to 
identify the item's larger pieces or characteristics as the visual 
input moves through the layers, eventually recognizing the 
target object. Regularization [29] and batch normalization 
[27][28][30] technique is utilized to stabilize the training. 
Dropout is added to the fully connected layers to reduce 
overfitting and speed up convergence. The transfer learning 
technique makes use of a model that has already been trained 
for classification and recognition to further train the model on 
a smaller domain specific dataset. 

C. InceptionV3 
The InceptionV3 [9] deep convolutional neural network 

performs image categorization tasks. The architecture comprises 
of connected layers that use several activation functions. The 
main principle of the InceptionV3 design is to employ several 
inception modules to make the network learn features or 
characteristics at various spatial scales. These modules consist 
of several parallel convolutional layers with various filter sizes, 
a pooling layer, and a concatenation of the outputs from the 
parallel layers. 

The InceptionV3 model requires an input size of 299 x 299 
pixels, we scale all images to that size. We processed the images 

 
Figure 1. Sample images of several different food categories from the 
Food-101 dataset [5]. 



in batches during training using data generators. Data generators 
allow to train the model on enormous datasets that won't directly 
fit in memory while using less memory overall. We used 
pretrained weights and transfer learning to train the model on 
Food-101 dataset. The InceptionV3 model's top layers were 
partially unfrozen, and the entire model was retrained using a 
slower learning rate.  

D. EfficientNetV2S 
One of the most effective convolutional neural networks 

(CNN) models is EfficientNet [21]. EfficientNetV2 [22] takes 
one step further than EfficientNet. Its major objective was to 
increase parameter efficiency and training speed, which is 
several times smaller and far faster than the earlier version. We 
used the pretrained EfficientNetV2S [22] model to train on Food 
101 dataset. This model is smaller, quicker to train, and scales 
well to growing data without sacrificing accuracy in comparison 
to prior variants. It provides a more effective and progressive 
learning technique that adaptively modifies both regularization 
and image size. This model uses both MBConv and Fused-
MBConv layers, to optimize high accuracy and training speed. 

E. Fusion - LSTM+ InceptionV3 
This model was originally designed to perform multimodal 

classification of the same concept using both textual and visual 
input [20]. Two different models are trained and ensembled 
using early fusion technique in conjunction with ensemble 
strategy to implement a multi-modal classifier that outperforms 
state-of-the-art models on relevant datasets. 

We used an adaptation of this model designed for image 
classification. It is based on a CNN model constructed on the 
architecture of InceptionV3. The last layer comprises 128 units, 
which is a long short term memory (LSTM) layer, whereas the 
other parallel final layer, which is a dense layer, comprises 128 
units as in the Inception model. The outputs of those layers are 
passed into the concatenation layer. A 256-unit dense layer and 
a rectified linear unit (ReLU) activation function are added after 
concatenation. Lastly, the classification layer is a dense layer 
with 101 units and a SoftMax activation to work with the Food-
101 dataset. This layer outputs the final classification results of 
the expected category of the given inputs. 

F. Proposed Majority Voting Ensemble Models 
Majority voting can be applied to enhance model 

performance and could produce results that are superior to those 

of any one model utilized alone. The way a voting ensemble 
operates is by aggregating the results of forecasts from various 
models, the input is then assigned to the majority class. We 
propose soft majority voting and hard majority voting ensemble 
models that combine the predictions of level-0 models: 
InceptionV3, EfficientNetV2S, and Fusion-LSTM + 
InceptionV3. Figure 2 shows the architecture of the majority 
voting ensemble model. 

i. Proposed hard majority voting ensemble model 

A hard voting model uses the mode of all the predictions 
from various level-0 models to classify input data. Depending 
on whether the weights assigned to the various level-0 models 
are equal or not, the majority vote is regarded differently. For 
our proposed model we assume equal weights. 

Suppose there exists three level-0 models. The class labels 
for the predicted class for certain input data for each of the three 
level-0 models is [1, 1, 0]. If all the models have equal weights, 
the mode of predictions is chosen. As a result, class 1 is 
predicted for the specific input data because the mode of [1, 1, 
0] is 1.  

ii. Proposed soft majority voting ensemble model 

A soft voting model uses all the predictions from several 
level-0 models in terms of probabilities to classify input data. 
The weights assigned to each level-0 model are applied 
accordingly. Each level-0 model first assigns a probability to 
each class. The class with the highest overall probability is the 
ensemble's prediction. As an illustration, suppose there are three 
level-0 models, each trained to distinguish between images of 
pizza and pancake. The image is predicted to be of a pancake 
with a probability of 0.7 and a pizza with a probability of 0.3 by 
the first level-0 model, a pancake with a probability of 0.4 and a 
pizza with a probability of 0.6 by the second model, and a 
pancake with a probability of 0.6 and a pizza with a probability 
of 0.4 by the third model. The ensemble will predict the image 
is of a pancake. 

G. Proposed Meta-Learner Stacking Models 
We propose seven different meta-learner stacking models 

based on the three level-0 models discussed earlier. Figure 3 
shows the architecture of the proposed meta-learner stacking 
models. 

 
Figure 2. Architecture of the proposed majority voting ensemble model. 

 
 
Figure 3. Architecture of the proposed meta-learner stacking models. 
Seven models are proposed based on seven different meta-learner 
classifiers. 



An ensemble meta-learner is referred to as stacked 
generalization or simply stacking. It generalizes on data in a 
stacked fashion. One advantage of stacking is that it could 
outperform any single model in the ensemble by utilizing a 
variety of effective models. To determine how the predictions 
are combined from two or more underlying level-0 models, it 
employs a meta-learner classifier, which learns whether each 
member of the ensemble is to be trusted or not. In stacking, as opposed to bagging, the models are often unique and fitted to the 

same dataset. Stacking leverages an individual model to learn to 
integrate the results from level-0 models, as opposed to an order 
of models that adjusts the findings of previous models. 

V. EXPERIMENT SETUP 
In this section, we discuss hardware and software setup and 

machine learning model setup to train the deep learning models. 
The Food-101 dataset is split randomly with 75% and 25% of 
the images for training and validation, respectively. 

A. Hardware and Software Setup 
All the experiments in this research were carried out on an 

Apple MacBook Air with an 8-core CPU, four performance 
cores, four efficiency cores, a 16-core Neural Engine, and an 
eight GB unified memory. Some of the experiments were 
conducted on Google Colab. Python Jupyter notebook was used 
to implement the code and visualize the results. TensorFlow [15] 
and Keras [16] machine learning, deep learning, and Python 
libraries were used for implementation. TensorFlow [15] 
enables developers to experiment with novel optimizations and 
training algorithms. 

B. Pre-processing and Data Augmentation Setup 
Exploratory data analysis of the dataset's images uncovered 

certain issues. The images in the dataset range in size from 183 
x 183 to more than 4,000 x 4,000. However, only 20% of the 
images are smaller than 400 x 400 or larger than 973 x 973, with 
50% of the images falling between 190 x 190 and 852 x 852. We 
resized the images to 299 × 299. Random rotation was employed 
coupled with a random horizontal flip to augment the dataset. 

TABLE III. TOP-1 VALIDATION CLASSIFICATION ACCURACY PERCENT OF 
META-LEARNER STACKING SVM LINEAR MODEL ON FOOD-101 DATASET 

(TOP 20 CLASSES SORTED IN DESCENDING ORDER OF ACCURACY) 

Classes Accuracy (%) 
Chicken wings 100.0 

Chicken quesadilla 100.0 

Pizza 100.0 

Chocolate cake 100.0 

Donuts 99.9 

Sushi 99.9 

Breakfast burrito 99.8 

Cheesecake 99.8 

French fries 99.6 

Garlic bread 99.5 

Hamburger 99.4 

Grilled cheese sandwich 99.3 

Cup cakes 99.3 

Caesar salad 99.2 

Fried rice 99.2 

Nachos 99.2 

Apple pie 99.2 

Pancakes 99.1 

Hot dog 99.1 

Ice cream 99.0 

 
 
 
 
 
 

TABLE II. TOP-1 VALIDATION CLASSIFICATION ACCURACY PERCENT OF 
SOFT MAJORITY VOTING ENSEMBLE MODEL ON FOOD-101 DATASET 

(TOP 20 CLASSES SORTED IN DESCENDING ORDER OF ACCURACY) 

Classes Accuracy (%) 
Chicken wings 100.0 

Pizza 100.0 

Chicken quesadilla 99.9 

Hamburger 99.9 

Donuts 99.9 

Cheesecake 99.8 

Garlic bread 99.8 

Cup cakes 99.7 

Chocolate cake 99.6 

Sushi 99.5 

Caesar salad 99.5 

French fries 99.4 

Breakfast burrito 99.3 

Grilled cheese sandwich 99.1 

Hot dog 99.0 

Pancakes 98.9 

Nachos 98.8 

Ice cream 98.7 

Fried rice 98.5 

Apple pie 98.5 

 
 
 
 
 
 

TABLE I. TOP-1 VALIDATION CLASSIFICATION ACCURACY PERCENT OF 
VARIOUS MODELS ON THE FOOD-101 DATASET 

Models Accuracy (%) 
Level-0 Models  

InceptionV3 81.2 

EfficientNetV2S 90.5 

Fusion - LSTM + InceptionV3 92.2 

Proposed Majority Voting Ensemble Models  

Hard Majority Voting Model 92.4 

Soft Majority Voting Model 92.7 

Proposed Meta-learner Stacking Models  

SVM RBF 90.2 

KNeighbors 91.5 

Random Forest 91.7 

CatBoost 91.9 

XGBoost 92.3 

Multilayer Perceptron (MLP) 92.8 

SVM Linear 93.1 

 



C. Transfer Learning and Setup of Level-0 Models 
Transfer learning is a machine learning strategy where a 

learned model is used to train a new model for a different 
problem domain. Knowledge is transferred between domains 
using the pre-trained network. Training deeper neural networks 
is more challenging and multiple deep learning applications take 
advantage of transfer learning to train on smaller datasets. 

Two pre-trained models, InceptionV3 and EfficientNetV2S, 
that are originally trained on the ImageNet dataset [19], are 
loaded for transfer learning. The Conv2D layer's input shape is 
(299, 299, 3) to match the size of the input image. The output is 
flattened to a 1D vector using the dense layer after the final max 
pooling 2D layer and is then passed through fully linked Dense 
layers with 128 neurons. There is a ReLU activation function in 
the dense layer. Two dropout layers with a rate of 0.2 are 
utilized, one before and one after the first dense layer, to avoid 
overfitting. Finally, the model is built using a categorical cross-
entropy loss function. Stochastic gradient descent (SGD) 
optimizer is used, which is an adaptive optimization technique 
to find locally optimal weights. The model is tested using the 
validation set after being trained for 10 epochs with a batch size 
of 64. The model checkpoints for both models are saved in an 
hdf5 file to evaluate and visualize results. 

D. Proposed Majority Voting Ensemble Models Setup 
Voting is implemented via the Scikit-learn [17] Python 

machine learning package. The voting input is set to either hard 
or soft. The predictions from three different level-0 models are 
aggregated into an ensemble that casts votes. Each voting 
ensemble model is tested repeatedly with a 10-fold cross-
validation method. This function receives an instance of the 
model and returns the scores from 10-fold cross-validation 
iterations. Next, each method's average performance is 
calculated. 

E. Proposed Meta-learner Stacking Models Setup 
We used Scikit-learn library to implement stacking of three 

level-0 or base models. The final estimator provides the level-1 
model or meta-model. Cross-validation is used to prepare the 
meta model. We use seven different meta learner classifiers at 
level-1 namely Support Vector Machine (SVM) Linear kernel, 
SVM Radial Basis Function kernel (RBF), KNeighbors, 
Random Forest, XGBoost, CatBoost, Multilayer Perceptron 
(MLP), and compare their results in the next section. 

VI. RESULTS AND DISCUSSION 

A. Results of Level-0 Models 
All three level-0 models were trained on the ImageNet 

dataset and the pre-trained model is trained on the Food-101 
using the SGD optimizer and the parameter values LR = 0.0001, 
batch size = 32, training ratio = 0.75, testing ratio = 0.25, and 
epochs = 10. Table I shows the Top-1 classification accuracy 
percent on the Food-101 dataset. 

After training the InceptionV3 model for 10 epochs the 
validation accuracy is 81.2%. The EfficientNetV2S model was 
trained for 10 epochs and the validation accuracy is 90.5%. After 
training the Fusion-LSTM+InceptionV3 model for 15 epochs 
the validation accuracy is 92.2%, which is the highest of the 
three level-0 models. 

From Table IV it could be observed that the EfficientNetV2S 
is quickest to train with fewest parameters and size on disk 
compared to the other two level-0 models. Fusion – 
LSTM+InceptionV3 has the highest accuracy, but it expectedly 
has more parameters, higher size on disk, and larger total 
training time. 

 

 
(a) 

 
(b) 

Figure 4. (a) Training and (b) validation loss plot for Meta-learning Stacking Multilayer Perceptron (MLP) model on the Food-101 dataset. 

TABLE IV. MODEL SIZE AND TRAINING TIME FOR LEVEL-0 MODELS ON 
FOOD-101 DATASET 

Model Parameter 
Count 

(million) 

Size on 
Disk (MB) 

Epochs Total 
Training 

Time 
InceptionV3 23.9M 92 10 7h 21m 
EfficientNetV2S 21.6M 88 10 5h 2m 
Fusion - LSTM 
+ InceptionV3 

110M 180 15 8h 3m 

 

TABLE V. MODEL SIZE AND TRAINING TIME FOR META-LEARNING 
STACKING MODELS ON FOOD-101 DATASET 

Model Size on Disk (MB) Total Training Time 
SVM RBF 68 6h 27m 
KNeighbors 53 5h 45m 
Random Forest 57 5h 13m 
CatBoost 71 6h 11m 
XGBoost 69 6h 02m 
MLP 120 7h 57m 
SVM Linear 77 6h 38m 

 



B. Results of Proposed Majority Voting Ensemble Models 
Table I shows the validation accuracies of hard voting and 

soft voting models as 92.4% and 92.7% respectively. Both 
voting models improved upon the level-0 models. As expected, 
soft majority voting gave slightly better results. The 
classification accuracy results of soft voting for the top 20 
classes can be seen in Table II. Majority voting implementation 
is computationally inexpensive. 

C. Results of Proposed Meta-learner Stacking Models 
Table I shows the validation accuracies of seven different 

meta-learner stacking models. The best performing stacking 
model was trained with SVM linear at 93.1%. Both SVM linear 
and MLP models improved upon the voting models and level-0 
models. XGBoost improved upon the all level-0 models and was 
at par with the voting models. The accuracy results of best 
performing meta-learner stacking SVM linear model for the top 
20 classes can be seen in Table III. Figure 4 shows the training 
and validation loss of MLP stacking model across 15 epochs of 
training. Table V presents a comparison of the model size and 
training time for the seven meta-learning stacking models. 

VII. CONCLUSION AND FUTURE WORK 
In this paper we proposed two majority voting ensemble 

models, which outperformed their level-0 models. Furthermore, 
we proposed seven meta-learner stacking models based on the 
three level-0 models. The best performing stacking model was 
the SVM linear stacking model that improved upon the three 
level-0 models and the voting ensemble models. MLP stacking 
model also improved upon the level-0 models and the voting 
ensemble models. The models were trained on the challenging 
Food-101 dataset, which has high variability in terms of food 
images, varied illumination, and occlusion. Future work will 
focus on fusing larger transformer models on bigger datasets 
along with multi-class and multi-modal classification of food 
images, which is an active and challenging area of research. 
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