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Abstract:
Speech emotion recognition (SER) is a challenging and active field of

collaborative, social robotics to improve human-robot interaction (HRI) and
affective computing as a feedback mechanism. More recently self-supervised
learning (SSL) approaches have become an important method for learning speech
representations. We present results of experiments on the challenging large-
scale speech emotion RAVDESS dataset. Six very large state-of-the-art self-
supervised learning transformer models were trained on the speech emotion
dataset. Wav2vec2.0-XLSR-53 was the most successful of the six level-0 models
and achieved classification accuracy of 93%. We propose majority voting
ensemble models that combined three and five level-0 models. The five-model
and three-model majority voting ensemble models achieved 96.88% and 96.53%
accuracy respectively and thereby significantly outperformed the best level-0
model and surpassed the state-of-the-art.
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1 Introduction

Emotion recognition is a challenging and popular field of collaborative, social robotics
to improve human-robot interaction (HRI) and affective computing as a feedback
mechanism. However, human emotional expression and experience is complex, subjective
and contextually heterogenous with endless variations. Thus, the innate challenges of
modeling emotional representations in speech signals are augmented in supervised learning
where annotated labels for a large dataset are required to improve performance. Self-
supervised learning approach, specifically contrastive learning resolves this issue of dealing
with the lack of available annotated data, either for low-resource language or an overall
lack of available data for the downstream task itself by learning the generic representation
from large-scale data without any manual external supplementary labeling. Although
Convolutional Neural Networks (CNN) learn representations with fewer parameters than
attention-based transformer models, CNNs are spatially local. Therefore, attention-based
Transformer models are adopted to learn global representations.

Hence, this research paper investigates the different model architectures for downstream
task of speech emotion recognition (SER) using self-supervised learning (SSL), and
attention-based transformer modules by fine tuning of automatic speech recognition (ASR)
models. Moreover, the best performing SSL models would be further chosen to implement
majority voting ensemble to investigate improvement in performance of emotion prediction.

This research paper is organized as follows. Section 2 provides a thorough overview,
beginning with an introduction to speech emotion recognition (SER) and the relevant
deep learning concepts and techniques in this research area. Section 3 introduces different
self-supervised learning (SSL) models used in this research. This section also presents
description of majority voting ensemble using the SSL models. Section 4 covers the
description of the RAVDESS dataset used in the experiments. Section 5 presents the
experiment setup used for performing the experiments including development tools and data
pre-processing steps. Section 6 presents the experiment results such as confusion matrices,
classification reports, tables for model performance comparison, evaluation metrics like
weighted accuracy and unweighted accuracy with additional context describing their
interpretation. This section also includes information about model configurations used in
the experiments and then discusses findings from the experiments by summarizing the
model performance of several models. Finally, Section 7 presents the conclusion on speech
emotion recognition using self-supervised learning (SSL) approach and the majority voting
ensembles along with possible future work.

2 Related Work

This section provides a summary of recent research conducted on speech emotion
recognition (SER) with various deep learning algorithms. Ultimately, this paper seeks to
provide a generalizable comparison for self-supervised learning (SSL) algorithms for speech
emotion recognition on RAVDESS dataset specifically using majority voting ensemble.
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Han et al. (2021) proposed a parallel network of Resnet-CNN-Transformer Encoder for
SER on RAVDESS dataset and achieved average test accuracy of 80.89% after training the
model for 500 epochs by repeating the experiments five times. The human accuracy for
speech emotion recognition on RAVDESS dataset is 67%, which indicates that SER for
RAVDESS is complex even for human evaluators Livingstone & Russo (2018).

In another research, Bautista et al. (2022) used combination of a CNN and attention based
networks, running in parallel to classify emotions using speech modality on the RAVDESS
dataset. The parallel hybrid model is used to model both the spatial as well as temporal
features. The authors transformed the raw acoustic speech data from RAVDESS dataset
into Mel-Spectrograms and applied different acoustic data augmentation techniques like
Additive White Gaussian Noise (AWGN), Room Impulse Response (RIR), SpecAugment,
and Tanh distortion techniques to generalize model representation. They conclude that
supervised parallel hybrid model architectures perform better with a substantially lower
number of training parameters in comparison to the standalone CNN or attention based
models as well as hybrid architectures that combine CNN layers within time-distributed
wrappers stacked on attention-based modules Zenkov (2020).

Luna-Jiménez et al. (2021) presents multimodal emotion recognition by combining two
modalities, speech and facial expressions with a late fusion strategy on the RAVDESS
dataset using transfer learning. Transfer learning uses pre-existing knowledge captured
by a supervised pre-trained models like the CNN-14 of the PANNs Kong et al. (2020)
framework for SER task to improve performance through fine-tuning. Whereas the facial
expressions were classified using transfer learning approach with a pre-trained spatial
transformer model on both saliency maps and facial images, which is then followed by a
Bi-LSTM that incorporates an attention mechanism. By combining these models trained
on different modalities using a late fusion strategy, the authors were able to produce higher
accuracy of 80.08% on RAVDESS dataset for subject-wise 5-fold cross-validation when
compared to if the models were executed separately. For instance, the authors reported the
SER accuracy using speech modality of only 76.58% on RAVDESS, without multimodal
fusion strategy. The deep learning research in the speech domain has majorly adopted a pre-
training approach with self-supervised learning of speech representations from raw speech
acoustic data over using supervised learning architectures. When fine-tuned on standard
benchmarks, the self-supervised pretraining approach with wav2vec2 as feature extractor
has simplified and improved performance, especially in a low-data setting as demonstrated
in Luna-Jiménez et al. (2022) where it achieved 81.82% accuracy on RAVDESS for speech
emotion recognition task by incorporating self-supervised model like wav2vec2-xlsr +
multilayer perceptron (MLP) instead of supervised models like CNNs or PANNs used in
their previous work that gave 76.58% accuracy.

However, due to the nature of self-supervised pretraining, the audio encoders like
Wav2Vec2.0 and HuBERT lack suitable decoding to transform speech representations into
functional outputs, which necessitates fine-tuning for ASR and acoustic classification tasks
as shown in IBM AI research Morais et al. (2022) with downstream-upstream paradigm on
IEMOCAP dataset for End-to-End (E2E) SER downstream task. Moreover, Atmaja & Sasou
(2022) presents comprehensive research on five emotion datasets in different languages with
20 different deep learning models. The prior research provide a benchmark for our research
expectations regarding the performance of self-supervised learning pretrained models for
SER task.

Besides, Wang et al. (2021) also presents a comprehensive fine-tuning of Wav2vec2.0
and HuBERT pretrained ASR models for other downstream tasks like speech emotion
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recognition (SER), spoken language understanding (SLU) and speaker verification (SV).
The authors achieved competitive weighted accuracy (WA) results of 79.58% and 73.01% on
speaker-dependent setting and on speaker-independent setting respectively for SER task on
IEMOCAP dataset. Their research illustrates the strength of the fine-tuned SSL models for
learning speech representations like audio prosody, voice prints and semantics effectively
on a large dataset.

Since fine-tuning self-supervised models is extremely complex requiring skilled
practitioner, OpenAI released Whisper architecture model family in 2022 based on large-
scale weak supervised training on a large and diverse labelled dataset of 680,000 hours
of multilingual and multitask supervision with concentration on zero-shot transfer to
demonstrate improvement in the robustness and generalization of speech recognition to
predict massive amounts of audio transcriptions on the internet without any finetuning
Radford et al. (2022). Whisper showed competitive results on standard benchmarks with
previous fully supervised research results in a zero-shot transfer setting, even outperforming
XLS-R in Multilingual speech recognition performance on Multilingual LibriSpeech (MLS)
dataset but is still substantially behind XLS-R on Multilingual VoxPopuli datasest.

The self-supervised fine-tuned models are adroit at finding patterns that are stiff and
forged and do not generalize well to other datasets or distributions. This can be avoided
by using large-scale weakly supervised Whisper for speech recognition. Vásquez-Correa
(2023) presents a comprehensive comparison of wav2vec2.0 and Whisper for speech
recognition in a privacy preserving federated learning setting.

Note that model fine-tuning is focused on adapting a pre-trained model to a new dataset or
a task by fine-tuning the model on a new labeled dataset. This would involve adjusting most
of the model parameters. Compared to model-tuning, transfer learning freezes certain layers
of the pre-trained model and only modifies some model parameters. In another research
by Shirian & Guha (2020), a Graph Convolution Network (GCN)-based architecture is
proposed to model speech signal as a cycle graph or a line graph to solve SER task using
graph classification. Their research uses IEMOCAP and MSP-IMPROV databases to take
advantage of graph signal processing results. This approach achieves state-of-the-art results
with substantially less parameters of only 30K, which is ideal for deploying this model on
resource-constrained devices.

Besides, using only speech modality from the audio-visual datasets, some recent
research works introduce a generalized modality-agnostic approach to emotion recognition
that can adapt across different modalities like text, speech in audio data, facial expressions
in video data and body gestures using motion sensors data by modeling dynamic data
as structured graphs. An example of such research proposed by Shirian et al. (2022) is
the compact Learnable Graph Inception Network (L-GrIN) for joint graph learning and
classification to cooperatively learn emotion recognition and the underlying graph structure
identification in the dynamic data of five benchmark emotion recognition datasets.Vaiani et
al. (2022) presents another recent model-agnostic example called ViPER with a multimodal
architecture to leverage a modality-agnostic late fusion transformer-based network to merge
video, textual and audio labels for human emotion recognition.

Most SER approaches are trained on centralized architecture raising ethical concerns
about the privacy of the personal data. To address this concern for persevering privacy,
a distributed machine learning approach like federated learning could be useful through
decentralization of personal data. Tsouvalas et al. (2022) employs SSL models in federated
learning (FL) paradigm to utilize both labeled and unlabeled on-device data. The authors
evaluated their experiments on IEMOCAP benchmark to demonstrate that their approach
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Figure 1 Wav2vec2.0 model architecture. The raw acoustic speech signals are mapped to latent
speech representations and sent as input to a transformer module to produce context
representations Morais et al. (2022).

of using SSL in semi-supervised federated learning setting generalizes well even under
sparse labelled data and highly non-independent and non-identically distributed setting
and achieves better accuracy than fully supervised federated settings under the similar
availability of labeled data.

3 Research Methodology

The SSL models used in this research share a common foundation in terms of their model
architecture structure and function, which involves taking input of raw audio and outputs
a vector representation. The variations amongst these SSL frameworks are found in the
pre-training stage. This makes the study of different SSL models for SER task ideal for
comparison as explored further in our research.

3.1 Wav2vec2.0

The wav2vec 2.0 large variant with 317 million parameter size as shown in Table 1 is
chosen for our research. For the experiments in this research, the version of the Wav2vec2.0
large model, pretrained and fine-tuned on 960 hours of only English language speech
datasets - Libri-Light Kahn et al. (2020) and Librispeech Panayotov et al. (2015) with self-
training objective Xu et al. (2021) on 16kHz sampled speech audio were obtained from the
Hugging Face repository Hugging Face (2021c). To prepare for the pretext task, a segment
of the latent speech representation obtained from the output of the feature extractor is
concealed as well as substituted with a trained feature vector that is common to all masked
components. This modified representation is then used as input to the transformer. Following
that, a quantization module is used that uses product quantization to convert the unmasked,
unmodified latent output of the feature encoder into discrete values q1, q2, q3..., qt as shown
in Figure 1. The goal of the contrastive task is to identify the right quantized latent speech
representation (qt) for a masked segment of the input from a pool of K + 1 candidates,
where one of them is the true qt, and the remaining K are distractors that are uniformly
sampled from the quantization of the other masked outputs in the same utterance.
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Table 1 Summary of SSL model variants according to their pretraining dataset and parameter size.

Model Pretraining dataset Parameter
Size

Wav2vec2.0 large model
Hugging Face (2021c)

53k hours of raw English speech data
sampled from audiobooks 317M

Wav2vec2-large-XLSR-
53 Hugging Face (2021d)

56k hours of unlabeled multilingual
speech datasets, sourced from Multilingual
LibriSpeech, CommonVoice and BABEL.

317M

HuBERT base model
Hugging Face (2021a) 960 hours of LibriSpeech audio 95M

HuBERT x-large model
Hugging Face (2021b) 60k hours of Libri-light audio 1B

UniSpeech large model
Hugging Face (2021e) Labeled: 1350 hours English (en) 317M

Unispeech large multi-
lingual model Hugging
Face (2021f)

Labeled: 1350 hours English (en) + 353
hours French (fr) + 168 hours Spanish (es)
+ 90 hours Italian (it) = 1961 hours

317M

3.2 Wav2vec2-large-XLSR-53

XLSR is an acronym for cross-lingual speech representations. As the name suggests, the
XLSR model is designed for multilingual speech recognition and utilizes wav2vec 2.0
as its foundation but it is larger in terms of both languages and model size. This model
is pretrained from the raw speech waveform in numerous languages as shown in Figure
2. It trains by solving a contrastive task on masked latent speech representations, and it
earns a shared quantization of the latents for different languages. After fine-tuning on
labeled data, experiments have demonstrated that cross-lingual pretraining is more effective
than monolingual pretraining. To achieve this, the model employs a shared quantization
module over feature encoder representations to produce multilingual quantized speech
units. Those units are then used as targets for a transformer that is trained via contrastive
learning. Through this approach, the model can share discrete tokens across multiple
languages, effectively creating connections between them. The XLSR approach needs only
raw unlabeled acoustic speech data in different languages.

3.3 HuBERT

Self-supervised speech representation learning using HuBERT framework incorporates an
offline clustering step to generate aligned target labels for a prediction loss similar to
BERT. The primary method used by Hubert to learn speech sequences involves partially
masking speech frame features. This is achieved through a series of steps. Initially, feature
sequences and pseudo tags are generated for a given audio content using a CNN and K-
means clustering. Following this, the feature sequence is masked by randomly selecting the
starting index as a time step of K, masking the feature sequence with length of S steps, and
inputting the resulting masked feature sequence into the transformers to generate contextual
feature representations and to compare with the generated pseudo-labels. This allows for
the prediction of the masked audio features.
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Figure 2 Wav2vec2.0-XLSR model architecture Conneau et al. (2021).

Figure 3 HuBERT model architecture Hsu et al. (2021).

In wav2vec2 framework, a portion of the CNN feature extractor’s output is masked
prior to inputting it into the transformer module for pre-training. However, as a replacement
for the quantization module utilized in wav2vec2.0 framework, HuBERT predicts hidden
cluster assignments of the masked timesteps, which are presented with Zi as shown in
Figure 3. These pseudo-labels are based on following two approaches. During the first
step of pre-training objective, the KNN clusters are constructed using the Mel-frequency
cepstral coefficients (MFFCs) of the training data. However, for consequent clustering steps,
latent representations from an intermediate layer of the HuBERT transformer encoder, from
the previous iteration, are re-used. The training process alternates between two steps: a
clustering step to create pseudo-targets, and a prediction step where the model tries to
guess these targets at masked positions. HuBERT relies primarily on the consistency of the
unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels.
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Figure 4 UniSpeech model architecture Wang et al. (2021).

3.4 UniSpeech

Wang et al. (2021) proposed UniSpeech framework as a unified approach to learn
phonetically aware contextual representations. Given a set of datasets:

• X set of labeled datasets from a high-resource domains at a large scale.

• Another set of unlabeled datasets, Y from low-resource domains.

• A final set of labeled datasets Z from the same low-resource setting.

UniSpeech framework follows the principles of wav2vec2.0. The model structure
comprises of the following components - a feature encoder to extract latent speech
representations, a transformer network to learn contextual representations and finally, latent
representations are discretized with the help of a quantizer as shown in Figure 4.

The objective is to leverage both X and Y data to learn robust representations by pre-
training the model. Subsequently, the feature extractor is frozen and the transformer part
is fine-tuned on a small portion of the labeled low-resource data (Z) using the multitask
learning (MLT) method, which consists of three main components. Firstly, a phonetic
Connectionist Temporal Classification (CTC) loss Graves et al. (2006) is applied on labeled
high-resource data (X) to fulfill the first learning objective. The remaining two objectives
are achieved by adopting the same technique as in wav2vec2.0, which involve recognizing
the right quantized latent speech representation from a set of distractors, on both X and Y
data. This process involves masking a specific portion of the feature extractor’s output.

3.5 Proposed Majority Voting Ensemble Models

We propose several voting ensembles of different SSL models created using the best models,
which gave high accuracy of 90% and above without overfitting in combinations of three
and five as shown in Figure 5 and Figure 6 respectively. Each of the individual SSL models
in the ensemble was trained individually with the same data, and evaluated on the same
test data. Then, the predictions from the base models were combined using majority voting.
An odd number of member SSL models in the ensemble were chosen to avoid ties across
predictions.
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Figure 5 Architecture of the proposed majority voting ensemble of 3 models -
Wav2vec2.0-XLSR-53, HuBERT x-large and UniSpeech large multi-lingual Model.

Figure 6 Architecture of the proposed majority voting ensemble of 5 models -
Wav2vec2.0-XLSR-53, HuBERT base, HuBERT x-large, UniSpeech large and
UniSpeech large multi-lingual.

4 Description of RAVDESS Dataset

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset
Livingstone & Russo (2018) is an audio-visual dataset with speech as well as song files in a
neutral North American accent. From the original dataset, only speech audio data consists
of 1,440 audio files recorded in 16-bit, 48kHz .wav format. 24 professional actors, equally
divided into 12 males and 12 females, vocalized two lexically matching statements, where
each actor recorded 60 trials, resulting in 1,440 files in total. The speech emotions in the
dataset are classified into eight categories, including neutral, calm, happy, sad, angry, fear,
surprise, and disgust. In the dataset, each emotion is expressed at two levels of intensity,
normal and strong, with the exception of ‘neutral’ emotion, which does not have strong
intensity. The 1,440 speech data is split into train and validation sets in 80:20 ratio with
1,152 and 288 speech audio files in the train and validation sets respectively.
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5 Experiment Setup

5.1 Hardware and Software Setup

• Python programming language is chosen as it’s the language of choice for almost all the
audio processing and speech deep learning packages with access to well documented
libraries.

• Huggingface transformers library Wolf et al. (2020) is a cutting-edge package in Python
containing open-source implementations of the state-of-the-art transformer models for
different modalities in PyTorch and other deep learning libraries.

• Huggingface datasets library Lhoest et al. (2021) is simple, fast and reproducible data
pre-processing library for public and custom datasets in different formats to efficiently
prepare the dataset for inspection, model evaluation, and training.

• PyTorch is an open-source machine learning (ML) framework built as Python
wrapper for Torch library. PyTorch was originally developed by Facebook’s artificial
intelligence research group (FAIR) and is now part of the Linux foundation. It provides
a high-level feature of GPU accelerated tensor computation for computer vision, natural
language processing, acoustic deep learning and graph learning applications. Our
research specifically used the Torchaudio library, which is a powerful library for audio
and signal processing in PyTorch framework Paszke et al. (2019).

• Weights & Biases for MLOps (WandB) is a real-time automated deep learning
experiment tracking tool and can be used seamlessly with popular deep learning
frameworks such as Pytorch and other deep learning frameworks Biewald (2020).

• Librosa is an opensource Python library for audio and music processing McFee et al.
(2015).

• Scikit-learn is an opensource, commercially usable - BSD license, Python library,
which includes numerous efficient tools for machine learning and predictive data
analysis Pedregosa et al. (2011).

• Pandas is a data frame-based library used for performing disk read and write operations,
and for importing the train and test dataset from a csv file as well as saving and loading
predictions of different SSL models for majority voting ensemble Wes McKinney
(2010), pandas development team (2020).

• NumPy library is used for performing various matrix operations in the speech pre-
processing step Harris et al. (2020).

• Matplotlib for plotting the confusion matrices to compare the prediction of SSL models
and majority voting ensemble Hunter (2007).

• Google Colab is a hosted Jupyter notebook environment, which includes numerous
built-in deep learning libraries as well as GPU and TPU support. To conduct
experiments in our research, Google Colab Pro Plus subscription is used to accelerate
training and satisfy the demands of high computational requirements for RAM and
GPU, by leveraging NVIDIA Tesla T4 and NVIDIA A100-SXM4-40GB.
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5.2 Data Preprocessing, Parameter Setup, and Implementation

The speech data in the SER RAVDESS dataset is a collection of the .wav audio files grouped
in different folders based on speakers instead of emotions. So, the files are rearranged
according to the naming convention used for the RAVDESS dataset to group the different
audio files as per different emotions labels. After this step, a csv file was created to specify
the audio file path and its corresponding emotion label so that the data could be loaded for
training by using a data loader without repeating the above steps each time before training.
After the data is loaded using a data loader, the SER dataset is split into train and test csv
files in 80:20 ratio.

To preprocess the speech audio data into our emotion classification model, the relevant
Wav2vec2 assets pertaining to the language of the dataset need to be set up from the Hugging
Face model cards for fine-tuning. A merge strategy, mean pooling mode, is utilized to handle
the context representations in any audio length for concatenating those 3D representations
into 2D representations. Note that three merge strategies namely, mean, sum, and max
could be employed in pooling mode. The mean merge strategy is employed during the
deep learning experiments in this paper to achieve better results for SER. Consequently, the
configurator and the feature extractor from Hugging Face transformers need to be initiated
for the same. The .wav or .mp3 audio files are read using Torchaudio library to resample
the audio files to 16kHz, and to map each audio to the corresponding emotion label. This
preprocessed data is then used for the training by emotion classification model based on the
merge strategy by specifying the pooling mode type as ‘mean’.

The SSL models are trained using Hugging Face library, in particular its Trainer
class API over writing a long boilerplate training loop in PyTorch to simplify the
intricacies involved in writing a training loop workflow in a single line after specifying the
hyperparameters used as training arguments when initializing the Trainer class. Thus, the
Trainer API helps in developing an organized and clean codebase. Before proceeding to use
the Hugging Face Trainer class API, the data collator is defined in the implementation as
described below.

SSL models like XLSR-Wav2Vec2.0 are different to most NLP models in that the SSL
models have a much larger input length than output length. For example, a sample of input
length 50,000 has an output length of no more than 100. Given the large input sizes of
SSL models, it is substantially more effective to dynamically pad the training batches. This
approach involves padding all the training samples to the length of the longest sample in
their batch, rather than the overall longest sample. Therefore, a special padding data collator
is required when fine-tuning an SSL model.

To put it simply, the special padding data collator is different from the common data
collators in that it applies separate padding functions to the input values and labels, taking
advantage of XLSR-Wav2Vec2’s context manager. This is crucial because input and output
are of different modalities in speech, and therefore require different padding functions.
Similar to the common data collators, the padding tokens in the labels are set to 100 so that
they do not affect the loss computation.

Next, the SSL model is imported from the pretrained checkpoint in the model cards
in the Hugging Face hub using Hugging Face API. Subsequently, training arguments and
the evaluation metrics are defined for the training to record the evaluation metrics between
the training and validation dataset. Finally, the Hugging Face Trainer class API is used
for training and the trained model checkpoint is saved after each 100 steps. The fine-
tuned model is then evaluated on the test data to confirm that the model has learned the
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Table 2 Model Configuration

Training Hyperparameter Value
Train batch size 4
Evaluation batch size 4
Gradient accumulation steps 2
Evaluation strategy steps
Number of training epochs 10
Save steps 100
Evaluation steps 100
Logging steps 100
Learning rate 1e-4
save_total_limit (number of
checkpoints) 2

do_train True
do_eval True
do_predict True

labels for the speech emotion recognition task by constructing the confusion matrices,
classification reports and training graphs in weights and biases along with computing the
weighted accuracy (WA) and unweighted accuracy (UA) across different SSL experiments.
The fine-tuned model checkpoint with satisfactory performance on the dataset is also pushed
to Hugging Face Hub private personal repository to inference later. Moreover, the predictions
of the different SSL models on the test dataset are saved in the csv file. These best performing
SSL model predictions are further used for majority voting ensemble in combinations of
three or five models based on hard voting by taking mode of the emotion label predictions
to further investigate improvement in performance.

5.3 Model Configuration

The training hyperparameters included a batch size of four, a learning rate of 0.0001 and
a gradient accumulation of two steps as shown in Table 2. The training was performed for
10 epochs (1,400 steps) for all the SSL models. The parameters presented in Table 2 are
passed to the Hugging Face trainer API as training arguments for training the SSL models
from the Hugging Face Transformers library. The checkpoint is saved after every 100 steps.

5.4 Model Evaluation Metrics

This section describes the evaluation framework for all the different deep learning
experiments. First, numerical confusion matrices along with normalized confusion matrices
are computed using Scikit-learn library to illustrate the proportions of confusion rather than
the exact numerical values and to provide a clear summary of where confusions among
emotion labels arise. Secondly, the classification reports are constructed using Scikit-learn
library to record the different evaluation metrics like recall, precision, F1-score and accuracy
on a label-basis for the different SSL models. Thirdly, the overall accuracy metrics of
the experiments is computed using two evaluation metrics - weighted accuracy (WA) and
unweighted accuracy (UA), which are commonly used in the deep learning literature for SER
and fit well on the dataset used for the experiments because of their skewness in the emotion
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label distributions. For eight emotion categories classification problem in the RAVDESS
dataset, the precision score, recall score and F1 score is computed separately for each of
the eight categories. This results in eight precision scores, one for each emotion category.
Similarly, there are eight recall scores and eight F1 scores, for each emotion category in the
RAVDESS dataset.

5.4.1 Unweighted accuracy (UA)

Unweighted accuracy (UA) represents the proportion of correctly predicted instances,
calculated by dividing the total number of correct predictions by the total number of
instances. Unweighted accuracy assigns equal importance to all classes, regardless of the
dataset’s class distribution.

5.4.2 Weighted accuracy (WA)

The computation of weighted accuracy involves taking the average of the fraction of correct
predictions within each emotion category, which is determined by dividing the number of
correctly predicted instances in an emotion category by the total number of instances in that
category. "weighted averaged recall", i.e., weighted accuracy (WA) is shown for different
emotion categories of the dataset in the classification report table.

6 Experiment Results and Discussion

6.1 Experiment Results of SSL Models

Each of the SSL-model along with its variants have been trained and evaluated to determine
the best candidates for the SER downstream task on the RAVDESS dataset. These
experiment results decide which models are further selected for majority voting ensemble.

6.1.1 Wav2vec2.0 Large Model

The classification report computed for Wav2vec2.0 large model (at 900 steps) is shown
in Figure 7. From the classification report for test data, the weighted accuracy (WA) is
90% and the unweighted accuracy (UA) is 90% on the RAVDESS dataset. The numerical
and normalized confusion matrices based on the classification report for test data using
Wav2vec2.0 large model are presented in Figure 8. From the training graph in Figure 9, it can
be inferred that the Wav2vec2.0-large model has converged and that there is no overfitting..

6.1.2 Wav2vec2.0-XLSR-53 Model

The classification report computed for Wav2vec2-XLSR-53 model is shown in Figure
10. From the classification report for test data, the weighted accuracy (WA) is 93% and
the unweighted accuracy (UA) is 93% on the RAVDESS dataset. The numerical as well
as normalized confusion matrices based on the classification report for test data using
Wav2vec2-XLSR-53 model are presented in Figure 11. From the training graph in Figure
12, it can be inferred that the Wav2vec2.0-XLSR-53 model has converged and that there is
no overfitting.
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Figure 7 Classification report for Wav2vec-2.0 large model on RAVDESS dataset (at 900 steps).

Figure 8 (a) Numerical confusion matrix for Wav2vec-2.0 large model on RAVDESS dataset (at
900 steps). (b) Normalized confusion matrix for Wav2vec-2.0 large model on RAVDESS
dataset (at 900 steps).

Figure 9 Training graph for Wav2vec-2.0 large model. X-axis shows train/global_step and Y-axis
shows loss and accuracy.

6.1.3 HuBERT Base Model

The classification report computed for HuBERT base model is shown in figure 13. From the
classification report for test data, the weighted accuracy (WA) is 92% and the unweighted



Ensemble of Large Self-Supervised Transformers for Improving Speech 15

Figure 10 Classification report for Wav2vec2-XLSR-53 model on RAVDESS dataset (at 1,100
steps).

Figure 11 (a) Numerical confusion matrix for Wav2vec2-XLSR-53 model on RAVDESS dataset
(at 1,100 steps). (b) Normalized confusion matrix for Wav2vec2-XLSR-53 model on
RAVDESS dataset (at 1,100 steps).

accuracy (UA) is 92% on the RAVDESS dataset. The numerical as well as normalized
confusion matrices based on the classification report for test data using HuBERT base model
is presented in Figure 14. From the training graph in Figure 15, it can be inferred that there
is divergence between training and validation losses after 900 steps, which is indicative of
overfitting. Hence, we should use the trained model at 900 steps.

6.1.4 HuBERT X-large model

The classification report computed for HuBERT x-large model is shown in Figure 16.
From the classification report for test data, the weighted accuracy (WA) is 90% and the
unweighted accuracy (UA) is 90% on the RAVDESS dataset. The numerical and normalized
confusion matrices based on the classification report for test data using HuBERT x-large
model are presented in Figure 17. The confusion matrices show that HuBERT x-large model
predicts sad and neutral emotion categories poorly in comparison to other emotions. From
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Figure 12 Training graph for Wav2vec2-XLSR-53 model. X-axis shows train/global_step and
Y-axis shows loss and accuracy.

Figure 13 Classification report for HuBERT base model on RAVDESS dataset (at 900 steps).

the training graph in Figure 18, it can be inferred that there is divergence between training
and validation losses after 600 steps. Hence, we should use the trained model at 600 steps.

6.1.5 UniSpeech Large Model

The classification report computed for UniSpeech-large model is shown in Figure 19. From
the classification report for test data, the weighted accuracy (WA) is 91% and the unweighted
accuracy (UA) is 91% on the RAVDESS dataset. The numerical and normalized confusion
matrices based on the classification report for test data using UniSpeech-large model are
presented in Figure 20. The confusion matrices show that UniSpeech-large model predicts
sad emotion category poorly in comparison to other emotions. From the training graph in
Figure 21, it can be inferred that there is divergence between training and validation losses
after 700 steps. Hence, we should use the trained model at 700 steps.

6.1.6 UniSpeech Large Multi-Lingual Model

The classification report computed for UniSpeech large multilingual model is shown in
Figure 22. From the classification report for test data, the weighted accuracy (WA) is 92%
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Figure 14 (a) Numerical confusion matrix for HuBERT base model on RAVDESS dataset (at 900
steps). (b) Normalized confusion matrix for HuBERT base model on RAVDESS dataset
(at 900 steps).

Figure 15 Training graph for HuBERT base model. X-axis shows train/global_step and Y-axis
shows loss and accuracy.

Figure 16 Classification report for HuBERT x-large model on RAVDESS dataset (at 600 steps).
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Figure 17 (a) Numerical confusion matrix for HuBERT x-large model on RAVDESS dataset (at
600 steps). (b) Normalized confusion matrix for HuBERT x-large model on RAVDESS
dataset (at 600 steps).

Figure 18 Training graph for HuBERT x-large model. X-axis shows train/global_step and Y-axis
shows loss and accuracy.

Figure 19 Classification report for UniSpeech large model on RAVDESS dataset (at 700 steps).

and the unweighted accuracy (UA) is 92% on the RAVDESS dataset. The numerical as
well as normalized confusion matrices based on the classification report for test data using
UniSpeech large multilingual model are presented in Figure 23. From the training graph in
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Figure 20 (a) Numerical confusion matrix for UniSpeech large model on RAVDESS dataset (at
700 steps). (b) Normalized confusion matrix for UniSpeech large model on RAVDESS
dataset (at 700 steps).

Figure 21 Training graph for UniSpeech large model. X-axis shows train/global_step and Y-axis
shows loss and accuracy.

Figure 24, it can be inferred that there is divergence between training and validation losses
after 600 steps. Hence, we should use the trained model at 600 steps.

6.2 Experiment Results of Proposed Majority Voting Ensemble Models

Table 3 shows the results of majority voting ensemble of the SSL models across five and
three combinations based on hard voting. The sub sections below present the classification
reports and the confusion matrices of the majority voting ensemble models.

6.2.1 Ensemble combination of five SSL models

The classification report computed for the ensemble model of Wav2vec2.0-XLSR-53,
HuBERT-Base, HuBERT x-large, UniSpeech-large, UniSpeech-large-multilingual based
on majority hard voting is shown in Figure 25. From the classification report, the weighted
accuracy (WA) is 97% and unweighted accuracy (UA) is 97% on the RAVDESS dataset.
The numerical as well as normalized confusion matrices based on the classification report
for the test data using majority ensemble model with five SSL models are presented in
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Figure 22 Classification report for UniSpeech large Multi-lingual model on RAVDESS dataset (at
600 steps).

Figure 23 (a) Numerical confusion matrix for UniSpeech large Multi-lingual model on RAVDESS
dataset (at 600 steps). (b) Normalized confusion matrix for UniSpeech large
Multi-lingual model on RAVDESS dataset (at 600 steps).

Figure 24 Training graph for UniSpeech large Multi-lingual model. X-axis shows
train/global_step and Y-axis shows loss and accuracy.

Figure 26. We tested all possible five model voting ensembles and report in this paper the
results of the most promising five model voting ensemble.
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Table 3 Results of Proposed Majority Voting Ensemble Models

Ensemble model combinations of 5 and
3 models Accuracy

Wav2vec2.0-XLSR-53, HuBERT-base,
HuBERT x-large, UniSpeech-large,
UniSpeech-large-multilingual

96.88%

Wav2vec2.0-XLSR-53, HuBERT x-large,
UniSpeech-large-multilingual 96.53%

Figure 25 Classification report for majority voting ensemble model of five models combination
(Wav2vec2.0-XLSR-53, HuBERT-Base, HuBERT x-large, UniSpeech-large,
UniSpeech-large-multilingual) using hard voting on RAVDESS dataset.

Figure 26 On the left numerical confusion matrix for majority voting ensemble model with five
SSL models (Wav2vec2.0-XLSR-53, HuBERT-base, HuBERT x-large, UniSpeech-large,
UniSpeech-large-multilingual) using hard voting on RAVDESS dataset. On the right
normalized confusion matrix for majority voting ensemble model with five SSL models
(Wav2vec2.0-XLSR-53, HuBERT-base, HuBERT x-large, UniSpeech-large,
UniSpeech-large-multilingual) using hard voting on RAVDESS dataset.
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Figure 27 Classification report for majority voting ensemble model with three SSL models
(Wav2vec2.0-XLSR-53, HuBERT x-large, UniSpeech-large-multilingual) using hard
voting on RAVDESS dataset.

Figure 28 (a) Numerical confusion matrix for majority voting ensemble model with three SSL
models (Wav2vec2.0-XLSR-53, HuBERT x-large, UniSpeech-large-multilingual) using
hard voting on RAVDESS dataset. (b) Normalized confusion matrix for majority voting
ensemble model with three SSL models (Wav2vec2.0-XLSR-53, HuBERT x-large,
UniSpeech-large-multilingual) using hard voting on RAVDESS dataset.

6.2.2 Ensemble combination of three SSL models

The classification report computed for the ensemble model of Wav2vec2.0-XLSR-53,
HuBERT x-large, UniSpeech-large-multilingual based on majority hard voting is shown
in Figure 27. From the classification report, the weighted accuracy (WA) is 97% and
unweighted accuracy (UA) is 97% on the RAVDESS dataset. The numerical as well as
normalized confusion matrices based on the classification report for the test data using
majority ensemble model with three SSL models are presented in Figure 28. We tested
all possible three model voting ensembles and report in this paper the results of the most
promising three model voting ensemble.
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Table 4 Summary of Performance of the SSL Models and the Proposed Majority Voting Ensemble
Models on the RAVDESS Dataset

Models Accuracy
Wav2vec2.0-large 90% (at 900 steps)
Wav2vec2.0-large-XLSR-53 93% (at 1,100 steps)
HuBERT base 92% (at 900 steps)
HuBERT x-large 90% (at 600 steps)
UniSpeech large 91% (at 700 steps)
UniSpeech large multilingual 92% (at 600 steps)
Wav2vec2.0-XLSR-53, HuBERT-base,
HuBERT x-large, UniSpeech-large,
UniSpeech-large-multilingual

96.88%

Wav2vec2.0-XLSR-53, HuBERT x-large,
UniSpeech-large-multilingual 96.53%

Table 5 Summary of Runtimes of the SSL Models on the RAVDESS Dataset

No. SSL Models Total Runtime
(approx.)

Average runtime
for 100 steps
(approx.)

Checkpoint
runtime as per
number of steps
(approx.)

1. Wav2vec2.0-large 1 hour 7 minutes
and 5 seconds

4 minutes and 40
seconds

43 minutes and 6
seconds (at 900
steps)

2. Wav2vec2.0-large-
XLSR-53

1 hour 11 minutes
and 17 seconds

5 minutes and 4
seconds

56 minutes (at
1,100 steps)

3. HuBERT base 21 minutes and 5
seconds

1 minute and 25
seconds

13 minutes and 26
seconds (at 900
steps)

4. HuBERT x-large 1 hour 13 minutes
and 27 seconds

5 minutes and 14
seconds

31 minutes and 24
seconds (at 600
steps)

5. UniSpeech large 35 minutes and 6
seconds

2 minutes and 27
seconds

18 minutes (at
700 steps)

6. UniSpeech large
multilingual

46 minutes and 42
seconds

3 minutes and 15
seconds

20 minutes (at
600 steps)

6.2.3 Comparison of results

Through the implementation of popular SSL models for speech emotion recognition (SER)
downstream task, an AI pipeline workflow is created using Upstream + Downstream model
paradigm with merge pooling strategy for speaker independent setting. The results achieved
on the six self-supervised Learning base models are state-of-the-art with significantly easy
workflow and less training time for complex task like speech emotion recognition as shown
in Table 4. Wav2vec2.0-XLSR-53 from wav2vec2.0 family has the highest WA as well
as UA accuracy of 93% at 1,100 steps with training time of approximately 56 minutes.
Similarly, HuBERT-base model achieved 92% accuracy (both WA and UA) at 900 steps
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Table 6 Summary of Model Size on Disk of the Different SSL Models Fine-Tuned on the
RAVDESS Dataset

Models Model Size on Disk
Wav2vec2.0-large 1.27GB
Wav2vec2.0-large-XLSR-53 1.27GB
HuBERT base 380MB
HuBERT x-large 3.86GB
UniSpeech large 1.27GB
UniSpeech large multilingual 1.27GB

with 13 minutes of training time. Whereas, UniSpeech-large-multilingual model achieved
92% accuracy at 600 steps in 20 minutes of training time as shown in Table 5. Thus, based on
the time taken to train the model to achieve high accuracy HuBERT-base could be an ideal
candidate. Besides, HuBERT-base model disk size is also significantly small of 380MB in
contrast to other high performing SSL models like Wav2vec2.0-XLSR-53 and UniSpeech-
large-multilingual, both of which have comparatively high model disk size of 1.27GB as
shown in Table 6.

The experiments in this research also demonstrated that proposed majority voting
ensemble models of different combinations of three or five of the top performing SSL models
significantly improved in terms of the overall accuracy of the model predictions across
different emotion classes of the dataset as shown in Table 3. The majority voting ensemble
of five SSL models - Wav2vec2.0-XLSR-53, HuBERT-base, HuBERT x-large, UniSpeech-
large, UniSpeech-large-multilingual based on hard voting provides more confidence in
prediction of emotion categories with a high weighted and unweighted accuracy of 96.88%
on the RAVDESS dataset, which is 3.88% higher than the top performing single SSL model,
Wav2vec2.0-XLSR-53. As for the majority ensemble with combination of three SSL models
- Wav2vec2.0-XLSR-53, HuBERT x-large, UniSpeech-large-multilingual achieved a high
weighted and unweighted accuracy of 96.53% on the RAVDESS dataset, which is 3.53%
higher than the single top performing SSL model, Wav2vec2.0-XLSR-53. This proves that
majority voting ensemble models help to increase confidence in the emotion predictions.

7 Conclusion and Future Work

We conducted experiments on the challenging large-scale speech emotion RAVDESS
dataset. Six very large state-of-the-art self-supervised transformers were trained on the
speech emotion dataset. Wav2vec2.0-XLSR-53 was the most successful of the six level-
0 models. We proposed majority voting ensemble models that combined 3 and 5 level-0
models, both the voting models significantly outperformed the level-0 models.

As future work different data augmentation techniques could be explored to improve
the performance for the SER task. Moreover, speech emotion recognition could be further
explored using multilingual settings. Besides, ethical considerations in developing SER
models for privacy perseveration suggests usage of federated learning to be the next suitable
step in this domain. As such investigations pursuing federated learning paradigm using SSL
models for emotion recognition are possible extensions of this research work.
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