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Abstract—Robot navigation is a challenging area of research
due to various physical, hardware, and software issues. In this
research, an autonomous robot system has been developed, which
incorporates a visual inertial SLAM system. Mapping and state
estimation rely on the accuracy acquired from fusing the data
from the cameras and inertial measurement units (IMU). The
fusion of these two sensors makes SLAM systems more accurate
and robust. This system is based on the ORB SLAM 3 algorithm,
and we have conducted extensive comparison between monocular,
monocular-inertial, stereo and stereo-inertial configurations. The
results were evaluated on benchmark datasets such EuRoC and
TUM.

Index Terms—SLAM, visual inertial, mapping, calibration

I. INTRODUCTION

Extensive exploration into simultaneous localization and
mapping frameworks relying on visual data along with visual
odometry, leveraging visual feedback either independently or
in conjunction with inertial measurement units (IMU), has gen-
erated exceptional systems. These systems have demonstrated
increased precision and resilience. Contemporary frameworks
rely on maximum a posteriori estimation corresponding to
bundle adjustment. This also includes geometric bundle ad-
justment which minimizes the error in reprojection in methods
that are based on features whereas in photometric bundle
adjustment it reduces the photometric discrepancy of a chosen
collection of pixels.

Recently visual odometry algorithms are being incorporated
with loop closure methods thereby reducing the boundary
between visual odometry (VO) and SLAM systems. Visual
SLAM focuses on utilizing the sensors embedded within
a robot to reconstruct a 3D map of the environment and
simultaneously calculating the position of the robot in real
time within the map. Visual odometry focuses on computing
the motion of the robot rather than map reconstruction.

The benefit of a SLAM system lies in its capacity to match
and utilize previous observations for bundle adjustment [1].
This can be further extended into three categories namely

short, mid, and long-term data association. Short-term data
association matches map features captured during the most
recent time, and it is the one used by most VO algorithms
and they forget about features once they are not in the same
field of view. This results in more error in trajectory even
though the framework is within the desired vicinity. Matching
of intermediate-term data association takes care of features that
are in close proximity to the camera and the accumulation
of the drift remains minimal. These elements can undergo
matching and utilization in Bundle Adjustment (BA) similar to
short term observations thereby facilitating the achievement of
zero drift while traversing mapped regions. These components
serve as the cornerstone for heightened precision in contrast to
VO algorithms that incorporate loop detection. In the context
of long-term data association, the focus is on aligning observa-
tions with elements in areas previously explored. This process
disregards the accumulated drift and helps in resetting the drift
and enables map correction through pose graph optimization.

In this research, we are proposing a system based on ORB
SLAM 3 that will be beneficial for autonomous robot navi-
gation in larger environments and utilizes the data association
of multiple maps. This permits it to align and utilize map
elements of BA fetched from prior sessions of mapping. The
paper is structured in the following manner where section II
focuses on the related work, section III describes the open-
source datasets used in this research, section IV formulates the
research methodology and section VI illustrates the experiment
results and subsequent discussions. Section VII provides the
conclusion to this research and the scope of the future research
improvement.

II. RELATED WORK

The inception of Monocular SLAM was initially addressed
in MonoSLAM [2, 3, 4] through the utilization of an Extended
Kalman Filter (EKF) alongside points of Shi-Tomasi, which
were then monitored across subsequent pictures using guided
search through correlation techniques. Substantial enhance-



ments in interim data association were achieved using methods
ensuring the consistency of feature matches, culminating in
the development of mobile visual SLAM systems [5, 6].
In comparison, approaches derived with keyframes as the
foundation, conduct map estimation by solely considering
some predetermined frames, thereby disregarding data from
intervening frames. This approach permits the execution of the
more resource-intensive yet more precise Bundle Adjustment
(BA) enhancement at the frequency of keyframes. A prominent
exemplar of such techniques was PTAM [7], which bifurcated
mapping and tracking of camera into two concurrent threads.
Methodologies based on keyframes offer superior accuracy
compared to filtering at equivalent computational expense
[8]. The realization of monocular SLAM on a larger scale
was achieved through bundle adjustment relying on sliding-
window [9] which was also coupled with double-window [10]
enhancement along with a covisibility graph.

Drawing from previous concepts, the ORB SLAM [11,
12, 13] algorithm, harnesses ORB characteristics, where the
descriptors facilitate short-range and intermediate-range data
matching, while constructing a covisibility graph to streamline
tracking and mapping complexity. It achieves relocalization
and loop closure by utilizing the DBoW2 [14] library or the
bag-of-words library, thus enabling longer-range data match-
ing. ORB SLAM is the sole SLAM system that incorporates
data association having all three types because of which the
result is exceptionally precise. In this study, we compare the
system for monocular-inertial, monocular, stereo-inertial and
stereo frameworks and also check the complexity in complex
environments. A new map is initiated once encountered with
loss of tracking data due to fast movements.

The integration of visual and inertial sensors offers re-
silience against challenges such as motion blur, lower quality
texture as well as occlusions. For systems with only one
camera, this combination enables the observation of scale. The
exploration of tightly coupled approaches traces its path to
MSCKF [16], which circumvents the quadratic cost of EKF
in the quantity of characteristics through the marginalization
of features. Subsequent refinements and extensions, as seen
in [17] and [18, 19], for stereo systems, improved upon
this initial framework. Among the pioneering tightly coupled
visual odometry systems is OKVIS [20, 21], which utilizes
keyframes and bundle adjustment, adaptable to both monoc-
ular and stereo vision. In contrast to feature-based methods,
ROVIO [22, 23] employs an EKF fed with error in photometry
through direct method of data association.

ORB-SLAM 3 unveiled the initial visual-inertial SLAM
framework proficient of utilizing long-term, mid-term, and
short-term data associations, enabling precise regional visual-
inertial BA relying on the preprocessing of IMU [24, 25].
Nonetheless, its IMU initialization process proved time inten-
sive, enduring for 15 seconds, negatively impacting resilience
and precision. Swifter initialization methods proposed in [26,
27] provides a comprehensive solution to concurrently as-
certain gravity, scale, initial velocity accelerometer bias, and
depth of visual features. Earlier studies [28] reveal that this

approach can lead to notable and unforeseeable errors.
VINS-Mono [29] stands out as a highly precise and resilient

monocular-inertial odometry method, incorporating loop clo-
sure techniques. The tracking of feature in VINS-Mono
employs a Lucas-Kanade tracker, offering slightly enhanced
robustness compared to descriptor matching. VINS-Fusion
extends this capability to stereo and stereo-inertial configu-
rations. Visual Inertial-Direct Sparse Odometry [15] expands
the capabilities of DSO further into the domain of visual-
inertial odometry, introducing a type of bundle adjustment
which integrates IMU observations along with the error of
photometry of carefully chosen high-gradient pixels, resulting
in exceptional accuracy. By effectively leveraging data from
high-gradient pixels, the system’s resilience in areas with
lower quality texture is significantly enhanced. The latest
advancement BASALT [30] finalizes loops by pairing ORB
characteristics, attaining precision levels varying from satis-
factory to outstanding. Conversely, Kimera [31], introduces a
groundbreaking metric-semantic mapping framework, which
combines stereo-inertial odometry with loop closure via pose-
graph and DBoW2 enhancement, delivering precision levels
comparable to VINS-Fusion [32].

The idea of enhancing tracking resilience during exploration
through map establishment and integration was initially in-
troduced in [33]. A multi-map system based on keyframes
was proposed in [34], its manual initialization of maps and
incapacity to integrate or correlate distinct sub-maps limited
its effectiveness. Research into multi-map capability has been
explored within collaborative mapping systems, such as those
involving several mapping agents and a central server for data
[35] reception, or bidirectional [36] informational exchange
systems like C2TAM. While MOARSLAM [37] introduced a
durable stateless client-server structure to facilitate collabora-
tive multi-device SLAM, its main emphasis was on software
structure rather than presenting accuracy outcomes.

VINS-Mono embodies a visual odometry system equipped
with both multi-map and loop closure capabilities, relying on
the DBoW2 place recognition library. Through experiments,
it is illustrated that ORB-SLAM3 achieves superior precision
when compared to VINS-Mono on EuRoC, owing to its
capacity to utilize the concept of mid-term data association.
The Atlas system in ORB SLAM 3, expanding upon DBoW2,
introduces an innovative place recognition method of higher-
recall and performs more precise map integration using re-
gional BA, resulting in a 3.2 times higher precision compared
to VINS-Mono for operation on multiple sessions on EuRoC.

III. DATASET DESCRIPTION

EuRoC [38] is a collection of data used for research and
testing in the field of computer vision and robotics. The
dataset is primarily designed to evaluate and benchmark the
performance of various methods in the context of micro aerial
vehicles and their sensor infrastructure. This dataset contains
data from several sensors such as inertial measurement units,
stereo cameras, etc. The data is collected using micro aerial
vehicles in both indoor and outdoor environments. It is a



Fig. 1. EuRoC dataset collection and configuration of sensors on the robot
for dataset collection. (a) ETH Machine Hall. (b) Ground-truth 3D scan of
the video conference room. (c) Hex-copter used for collection of dataset.

Fig. 2. TUM VI dataset for different scenarios for visual inertial odometry
benchmark evaluation.

benchmark dataset for conducting experiments in visual odom-
etry, SLAM, sensor fusion and other applications in robot
vision. The machine hall environment is depicted in Figure
1 (a), the ground truth 3D scan of the video conference room
is depicted in (b) and the sensor infrastructure on the hexcopter
is depicted in (c).

Fusing sensor and inertial data improves the precision and
robustness in visual inertial odometry algorithms. TUM [39]
visual inertial dataset offers a diverse range of sequences
captured in different scenarios for evaluation of visual inertial
odometry algorithms. It provides with stereo pair of images
with a resolution of 1024 X 1024. The images are captured at
20 frames per second with HDR and photometric calibration.
The IMU calculates the acceleration and angular velocities at
200 frames per second along 3 axes. The camera data and
the IMU data are time synchronized within the hardware.
To evaluate the accuracy of the trajectory, they also provide
the ground truth data that is captured with a motion capture
system at a frequency of 120 Hz. It also provides RGB-D
data along with the ground truth. It contains the color and the
depth images recorded at a frame rate of 30 Hz and a sensor
resolution of 640 X 480. The accelerometer data was collected
from the Kinect sensor. The frame references of the different
datasets in TUM are illustrated in Figure 2.

Fig. 3. Proposed system pipeline for visual-inertial SLAM.

IV. RESEARCH METHODOLOGY

An important computer vision problem is to be able to
recover 3-D information of a scene from its image. Usually
there is a scene which is defined in some world coordinate
frame and at the end of the day when the scene is reconstructed
it is important to know where each point lies in the world
coordinate frame. Images of the scene are at our disposal
where points are measured in pixels. In this research a system
pipeline is proposed for the visual inertial SLAM and the
components of the system can be segregated as the following:
Custom Stereo-Inertial Sensor Configuration: 2 Intel Realsense
D455 Cameras, Microstrain IMU. The above sensor configu-
ration was calibrated independently and then mounted on the
robots. It can be mounted on any robot and the mapping of
the environment can be done. The sensors need to be taken off
the robot to do proper calibration. It is essential to excite all
the axes during the calibration process which is not possible
while mounted on a robot. Robot Configuration: Husky UGV,
SPOT.

The above robot setup is used for conducting the experi-
ments. The custom stereo-inertial sensor was mounted on these
robots to conduct the experiments. The proposed visual inertial
SLAM system used for this research is depicted in Figure
3. Sensor Calibration: This step includes the calibration of
the cameras and the IMU. Camera Calibration: It determines
the intrinsic and the extrinsic parameters of the camera that
includes focal length, optical centre, and lens distortions.
This is essential for accurate pixel mapping from 3D world
coordinates to 2D image coordinates. IMU Calibration: The
IMU is calibrated to account for the sensor noise and the
accelerometer and gyroscope bias. This helps to obtain more
accurate measurements of accelerations and angular velocities.
Data Acquisition: The camera data and the IMU data are
acquired from the respective sensors.

Feature Extraction using S: Distinctive features are extracted
from the camera images such as keypoints and landmarks.
These features are tracked across subsequent frames to estab-
lish correspondences that helps in estimating the motion of
the camera. Initial Pose Estimation: The tracked features are
used to estimate the initial pose of the camera by relating



the camera poses between the frames. IMU Integration: The
measurements from the IMU are integrated to estimate the
linear and angular velocities of the system. It also involves
double integration of accelerometer measurements and inte-
gration of gyroscope measurements for orientation changes.
Visual Odometry: The tracked features and the estimated
camera poses are used to compute incremental transformations
between the frames. Data Synchronization: It is ensured that
the data from the camera and the IMU are synchronized in
time and there is minimum latency between the two. This is
also taken care of during the calibration process.

Sensor Fusion using EKF: The estimates from the visual
odometry and IMU integration are combined to obtain a more
accurate state estimation of the robot. Keyframe Insertion: The
new keyframes are inserted into the mapping process once the
bad ones are rejected and the good ones are accepted. For
the subsequent frames, new keypoints are created. Nonlinear
Optimization using Bundle Adjustment: The problem is for-
mulated as a nonlinear optimization task (often a least squares
problem) which is used to refine the estimates of camera poses
and feature locations. It optimizes the entire trajectory while
considering the visual and inertial trajectories in the process.

Database Query: Query is sent to the visual vocabulary
database that consists of visual features from the images. It
was created using the bag of words approach. Queries from the
present image are sent to the database to verify the similarity
score between the current image and any of the previous
frames. Loop Detection: During the verification of the sim-
ilarity score, it is possible to determine if there is any loop in
the mapping process. Loop Fusion: Once the loop is detected,
the loop is corrected in the mapping process thereby correcting
the drift in the mapping. This is essential for correcting the
accumulated errors in the odometry estimation. Global Map
Optimization: The entire map is optimized and refined, and the
accumulated drift is corrected further. It involves loop closure
constraints thereby improving the consistency of the estimated
trajectory.

Output Fusion: The final estimations from visual odometry,
inertial integration and loop closure are combined to obtain
a consistent trajectory and map of the entire system. In
order to determine the accuracy of the performance of the
algorithms, an evaluation system pipeline was also designed
for the evaluation of the visual inertial SLAM system. The
primary datasets used for this evaluation are EuRoC and TUM
VI and the ground-truth data was collected from the respective
dataset sources. The evaluation was performed on the ORB
SLAM 3 based visual inertial SLAM systems. The ground
truth data and the estimated trajectory data is in the following
format: Timestamps, Position of the robot in 3D space (x, y,
z), Quaternion Rotation of the Robot (q x, q y, q z, q w).

Figure 4 illustrates the evaluation system pipeline designed
to evaluate the visual-inertial SLAM system. The timestamps,
position and the rotation of the robot is not aligned between
the ground truth and the estimated trajectory because of
which they need to be interpolated first and aligned. If the
two trajectories are superimposed it will be noticed that are

Fig. 4. Evaluation system pipeline for the visual-inertial SLAM system.

completely misaligned. The two data are first interpolated
using linear interpolation and then aligned using the Horn
method or Kabsch method. Both methods are used for aligning
the data. The interpolated data is then used to compute the
following evaluation parameters which are used to verify the
accuracy of the algorithms: root mean squared error, mean
absolute error, mean squared error, absolute trajectory error.
The final step involves the alignment of the estimated and the
ground truth data.

V. EXPERIMENT ENVIRONMENT AND SETUP

A. Hardware Environment

The hardware setup is equipped with high performance GPU
such as NVIDIA RTX 3080 along with the Ryzen 9 5900
HX CPU which consists of 8 cores and 16 threads. GPU
VRAM is of 16 GB whereas the RAM was 32 GB. The sensor
infrastructure consists of two intel realsense D455 cameras
where each of the individual RGB module from each camera
were paired together to get a stereo configuration. We used
the integrated IMU within the realsense camera for the initial
calibration purpose and later switched with the Microstrain
IMU. This sensor infrastructure was mounted on the Husky
and SPOT robots for testing the ORB SLAM 3 based visual-
inertial system.

B. Software Environment

The codebase is developed primarily with C++ and Python.
The primary library used was OpenCV for implementation
of the computer vision algorithms. Matplotlib was used to
create line plots, bar plots, scatter plots, histograms, etc.
It was also used in combination with other libraries such
as numpy and pandas. We used Robot Operating System
(ROS) which is an open-source framework providing tools
and services for hardware abstraction, communication between
device drivers, etc. We used ROS Melodic and ROS Noetic
for our experiments. ROS Melodic operates on Python 2.7
whereas ROS Noetic is based on Python 3. The primary
visualization tool used was rviz along with pangolin which is
also a flexible framework for visualization, 3D reconstruction,
etc. The open source Kalibr [40] tool was used to calibrate the
cameras and the IMU. The IMU noise and bias was calculated



Fig. 5. AprilTag detection and corner detection for the calibration process
using the RealSense D455 camera. (a) AprilTag detection using RealSense
D455. (b) Reprojection error. Mean is 0.295. Std. Dev. is 0.183. (c) Corner
detection of the AprilTag.

using the Allan variance ros package which is also compatible
with the Kalibr framework.

VI. EXPERIMENT RESULTS AND DISCUSSION

The depth parameter of the RealSense camera was set to
true with a resolution of 840 x 480. The gyroscope and
accelerometer frames per second (FPS) were set to 400 and
250. The calibration was done for both monocular and stereo
configuration. The custom stereo inertial system was used
for the stereo calibration process. The AprilTag used for the
calibration process had the following configuration: size of
each tag is 0.088 m, number of AprilTags in each row and
column is six, space between each tag is 0.3 m.

A. Monocular Calibration

For the monocular calibration, the integrated IMU of the
RealSense D455 camera was used, which published the data
at 400 FPS and the rosbag color image data was recorded at
30 FPS. The monocular RGB color module was utilized and
the pinhole camera model was used for the calibration. Figure
5 illustrates the calibration of the monocular camera configu-
ration along with the reprojection error. Fig. 5 also illustrates
the April Tag detection along with the corner detection, which
helps in identifying the intrinsic and extrinsic attributes of
the camera along with the coefficients of distortion. However,
since the pinhole camera is used for the experiments, distortion
coefficients are almost equivalent to zero. Figure 6 (a) shows
the estimated poses of the monocular camera configuration and
the reprojection error along the x and y axes is represented in
(b). It also represents the coverage area of the camera while

Fig. 6. Estimated camera poses of the monocular camera while capturing
calibration data along with the resultant reprojection errors after calibration.
(a) Estimated poses of the monocular camera configuration. (b) Camera
coverage along the AprilTag and the reprojection error along x and y axis.

Fig. 7. Stereo camera system reprojection error and estimated poses. (a)
Stereo camera configuration. (b) Estimated poses of the stereo system. (c)
Reprojection error of first camera. (d) Reprojection error of second camera.

Fig. 8. IMU estimated poses along with the sample inertial rate of the IMU
demonstrating steady flow of data with the corresponding accelerometer and
gyroscope errors and biases. (a) Estimated poses for the integrated IMU in
the RealSense camera. (b) Sample inertial rate of the IMU. (c) Accelerometer
error within the 3σ bound (red dashed line). (d) Accelerometer bias within
the 3σ bound (red dashed curve). (e) Gyroscope error within the 3σ bound
(red dashed line). (f) Gyroscope bias within the 3σ bound (red dashed curve).

Fig. 9. Allan standard deviation of accelerometer and gyroscope with manu-
ally identified noise processes. (a) Allan standard deviation of accelerometer.
(b) Allan standard deviation of gyroscope.



Fig. 10. 2D plot of the camera trajectory of the EuRoC Machine Hall 01
dataset. (a) Estimated camera trajectory. (b) Ground truth trajectory.

collecting the calibration data. Once the monocular camera is
calibrated separately, the IMU needs to be calibrated as well.
A 22 hour 59 seconds long static IMU data was collected
to estimate the transformation between the camera and the
integrated IMU of the RealSense camera. The gyroscope
and the accelerometer bias of the IMU was calculated using
the Allan variance ROS package. Figure 8 (a) represents
the estimated poses of the IMU while collecting the rosbag
data. The same rosbag data was used for both the camera
and camera IMU calibration. Figure 8 (b) represents the
sample inertial rate of the IMU, which is a measure of the
angular velocity of the IMU at a specific sampling rate. During
calibration, the IMU is often subjected to static positions and
the inertial rate measurements are collected at regular intervals.
These measurements help in characterizing the performance
by compensating for the errors and biases. The accelerometer
and gyroscope errors and biases are represented in (c), (d), (e),
and (f) respectively. The fact that all of these are within the
3σ bound, which is marked with the red-dashed line suggest
accurate calibration results. Figure 9 (a) and (b) represents the
Allan standard deviation of the accelerometer and gyroscope
respectively.

B. Stereo Calibration

To calibrate the stereo pair of cameras, the same intel
RealSense D455 cameras were used but an external MicroS-
train IMU was used for the visual inertial system calibration.
The same calibration process was followed as done for the
monocular calibration, but both cameras had to be calibrated
separately. One camera was considered to be the global camera
coordinate frame and the transformation of the other camera
was determined with respect to the first camera. The IMU
transformations were determined with respect to both cameras
to determine the exact orientation and position of the IMU in
the sensor configuration. This is very important for accurate
state estimation. The IMU data was published at 100 Hz
whereas the stereo camera pair published the color image
data at 30 frames per second (FPS). The scale misalignment
model was used for calibrating the IMU for both the stereo
and monocular sensor configurations. Figure 7 (a) shows the
stereo camera sensor configuration along with the estimated
poses of the stereo system in Fig. 7 (b), while the reprojection
errors of the first and second cameras are represented in Figure
7 (c) and Figure 7 (d) respectively.

Fig. 11. Unaligned and aligned data of the EuRoC Machine Hall 01 dataset.
(a) Unaligned data of the ground truth and estimated trajectory. (b) Aligned
data of the ground truth and estimated trajectory using the Horn method.

Fig. 12. Sparse map generation and keyframe generation of the EuRoC
Machine Hall 01 dataset. (a) Sparse map for Machine Hall 01 dataset. (b)
Keyframe and feature detection of the current frame.

C. Stereo Inertial Evaluation on EuRoC Machine Hall 01
Dataset

The visual-inertial system based on ORB SLAM 3 was ex-
ecuted on the EuRoC Machine Hall 01 dataset. The estimated
and the ground truth trajectories were plotted against each
other to compare the accuracy. The estimated trajectory axis
was flipped to align itself to the ground truth data. Figure 10
(a) shows the estimated trajectory and Figure 10 (b) shows
the ground truth trajectory of the Machine Hall 01 dataset.
Subsequently the ground truth trajectory and the estimated
trajectory were aligned using the Horn method and the dif-
ferent evaluation parameters were determined to evaluate the
accuracy of the algorithm. Figure 11 (a) shows the unaligned
trajectory and Figure 11 (b) shows the aligned trajectory
of the ground truth and estimated trajectory of the Machine
Hall 01 dataset using the Horn method. The sparse map of
the environment was also generated which is represented in
Figure 12 (a). Figure 12 (b) represents the keyframe and
feature detection of the current frame while generating the
sparse map of the environment. Following are the evaluation
parameters used to determine the accuracy of the system:
Root Mean Squared Error: 0.021876 m, Mean: 0.019318 m,
Median: 0.017096 m, Standard Deviation: 0.010266 m, Min:
0.001405 m, Max: 0.129538 m, Max indexes: 1427, Compared
pose pairs: 3638

D. Stereo Evaluation on EuRoC Machine Hall 01 Dataset

A similar set of experiments were conducted on the EuRoC
Machine Hall 01 dataset using just the stereo pair of cameras
and no IMU was used for this experiment. Following are
the evaluation parameters used to determine the accuracy
of the algorithm: Root Mean Squared Error: 0.034710 m,
Mean: 0.025710 m, Median: 0.021142 m, Standard Deviation:
0.023319 m, Min: 0.001223 m, Max: 0.119464 m, Max
indexes: 1594, Compared pose pairs: 3638.



TABLE I
COMPARISON BETWEEN STEREO AND STEREO-INERTIAL

CONFIGURATION IN METERS

Stereo Stereo-Inertial
RMSE 0.034710 0.021876
Mean 0.025710 0.019318
Median 0.021142 0.017096
Standard Deviation 0.023319 0.010266

TABLE II
COMPARISON BETWEEN MONOCULAR AND MONOCULAR-INERTIAL

CONFIGURATION IN METERS

Monocular Monocular-Inertial
RMSE 2.582047 0.109435
Mean 2.376143 0.093516
Median 2.659100 0.081721
Standard Deviation 1.010402 0.056841

The comparison between the evaluation parameters of stereo
and stereo-inertial configuration is depicted in Table I.

E. Monocular Inertial Evaluation on EuRoC Machine Hall 01
Dataset

One camera and one IMU were used to perform this
experiment. Following are the evaluation parameters used to
determine the accuracy of the algorithm: Root Mean Squared
Error: 0.109435 m, Mean: 0.093516 m, Median: 0.081721
m, Standard Deviation: 0.056841 m, Min: 0.003959 m, Max:
0.628301 m, Compared pose pairs: 2729

F. Monocular Evaluation on EuRoC Machine Hall 01 Dataset

One camera was used to perform this experiment because
this evaluation was based on the monocular configuration.
Following are the evaluation parameters used to determine
the accuracy of the algorithm: Root Mean Squared Error:
2.582047 m, Mean: 2.376143 m, Median: 2.659100 m, Stan-
dard Deviation: 1.010402 m, Min: 0.551272 m, Max: 4.491108
m, Compared pose pairs: 3638.

The comparison between the evaluation parameters of
monocular and monocular-inertial configuration is depicted in
Table II.

G. Evaluation on TUM RGBD Dataset

We also conducted experiments on RGB and depth datasets.
While considering rgbd datasets associations had to be created
between the rgb and the depth data. In the rgb and depth text

Fig. 13. Sparse map and keyframe detection of TUM RGBD Freigburg 1 xyz
dataset. (a) Sparse map generation. (b) Keyframe and feature detection.

Fig. 14. Estimated camera trajectory and ground truth trajectory of TUM
RGBD Freigburg 1 xyz dataset. (a) Estimated camera trajectory. (b) Ground
truth data.

files there was information about the timestamps, translation,
and quaternion rotation data. Finally, an association was
created between the two where the timestamps were mapped
between both the rgb and depth data along with the images.
Once that was done, the algorithm was executed on the rgbd
dataset. Unlike RGB datasets RGBD datasets provide depth
information which helps in more accurate state estimation and
creation of map of the environment. It also assists in feature
detection and matching across frames leading to more robust
feature correspondences. Depth data also helps in accurate
3D reconstruction of the environment as well as obstacle
avoidance.

Figure 13 (a) illustrates the sparse map generated for the
the TUM VI Freigburg 1 xyz dataset along with the current
frame illustrating the feature detection in Figure 13 (b) while
mapping the environment. Subsequently, we also estimated the
trajectory of the camera and compared it with the ground truth
of the dataset. Figure 14 (a) illustrates the estimated trajectory
of the freigburg 1 xyz dataset along with the ground truth data
represented in Figure 14 (b). The ground truth data and the
camera trajectory were aligned using the Horn method which
is represented in Figure 15 (b). Figure 15 (a) shows the
unaligned data of the camera trajectory and the ground truth
data while fig shows the aligned data of the camera trajectory
and the ground truth data.

H. RGBD Evaluation of Freigburg 1 xyz Dataset

Root Mean Squared Error: 0.015258 m, Mean: 0.013320 m,
Median: 0.011903 m, Standard Deviation: 0.007442 m, Min:
0.001529 m, Max: 0.048537 m, Compared pose pairs: 792.

Fig. 15. Unaligned and aligned data of the Freigburg 1 xyz dataset using
the Horn method. (a) Unaligned data of the camera trajectory and the ground
truth. (b) Aligned data of the estimated trajectory and the ground truth.



VII. CONCLUSION AND FUTURE WORK

In this research, we introduced a visual inertial SLAM
system based on ORB SLAM 3 with a goal to perform
autonomous robot navigation. We compared the performance
of the system with open-source datasets such as EuRoC and
TUM VI. We evaluated the performance between stereo and
stereo-inertial systems as well as monocular and monocular-
inertial systems for the EuRoC datasets. We also evaluated
the performance of the algorithm on RGBD datasets on the
freigburg 1 xyz dataset. The results were significantly better
when switching from monocular to stereo system. We also
used our custom stereo inertial setup to test the SLAM system
and calibrated the stereo setup along with the IMU and
evaluated the performance in real world scenario. The system
has performed significantly well in terms of accuracy when
tested on open-source datasets. There is scope of improvement
when operating in real-time where the localization is lost when
moving too fast in an environment.
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