Int. J. of Artificial Intelligence and Soft Computing, Vol. x, No. x, 202X

Modeling the Demand Trend for Automobile Parts using
Machine Learning Methods

Oguzhan Akan

Department of Computer Science,
California State University,

Northridge, CA, USA

E-mail: oguzhan.akan.95 @my.csun.edu

Abhishek Verma*

Department of Computer Science,
California State University,
Northridge, CA, USA

E-mail: abhishek.verma@csun.edu
* corresponding author

Sonika Sharma

Department of Commerce,

Shaheed Bhagat Singh College,
University of Delhi, Delhi, India
E-mail: sonika.sharma@sbs.du.ac.in

Abstract: This research utilizes the automotive spare parts sales dataset,
containing 5,000 spare parts. Being able to accurately model demand trend for
spare parts helps in reducing warehousing costs, production costs, and could
result in higher sales via fulfilling sales orders in a timely manner. In order to
model the demand for automobile spare parts we build machine learning models
using K-Nearest Neighbor, Support Vector Regressor, Random Forest, Gradient
Boosting, Back Propagation Neural Networks, and Deep Neural Networks. We
conclude that Deep Neural Networks performs better than the rest of the machine
learning models on the spare parts dataset for demand trend modeling with a
RMSE validation score of 6.25. After a thorough literature review, it is observed
that there are few previous researches done on Gradient Boosting Regression
for demand trend modeling. Our research proves that Gradient Boosting’s
performance is better than other traditional machine learning models such as K
nearest neighbor, Random Forest, and Support Vector Regressor.

Keywords: Demand Modeling; Gradient Boosting; K-Nearest Neighbors; Random
Forest; Deep Neural Networks; Support Vector Machines

Reference to this paper should be made as follows: Akan, O., Verma, A., and
Sharma, S. (202X) ‘Modeling the Demand Trend for Automobile Parts using
Machine Learning Methods,” International Journal of Artificial Intelligence and
Soft Computing, Vol. x, No. X, pp.XXX—XXX.

Copyright © 202X Inderscience Enterprises Ltd.

2 author

Biographical notes: Oguzhan Akan received his Master of Science in Computer
Science degree from California State University, Northridge. His research interests
are in machine learning, deep learning, and big data analytics.

Abhishek Verma received his Ph.D. in Computer Science from New Jersey
Institute of Technology, NJ, USA. His research interests are in data science, big
data analytics, machine learning, and deep learning on big datasets.

Sonika Sharma received her Ph. D. in finance from University of Delhi, Delhi,
India. She is Associate Professor, Department of Commerce, Shaheed Bhagat
Singh College, University of Delhi, Delhi, India. Her research interests are in
finance, insurance, and business analytics.

1 Introduction

Automobile companies have various spare part inventory in their warehouse to cater toward
customer needs. The range of spare parts allows the automobile companies to have modularity
in their vehicles and makes it easier to perform repair and maintenance. However, it is
difficult to predict when, what parts, and in what quantity the customers would need. In order
to address this issue, demand trend modeling using machine learning helps the automotive
industry to recognize patterns and predict future sales. This allows their warehouses to
be filled with parts customers will most likely need, it helps in reducing the cost of part
storage and increase production in factories of parts that are highly requested. This results in
lower production costs, higher sales, better management of the inventory, fulfillment of the
part orders in a timely manner, higher profitability for the business, and overall improved
customer satisfaction.

In order to prevent shortage of parts and to reduce wasted resources, existing works have
used a wide range of methods to improve the performance of parts demand forecasting models.
Also, common challenges for demand trend modeling of spare parts are the intermittent
data and stochastic characteristics Amin-Naseri & Rostami Tabar (2008); RuiRui Xing,
Xianliang Shi, Member (2019); Shenstone & Hyndman (2003); Xu et al. (2012). Due to
the challenging nature of parts demand modeling and to improve modeling accuracy we
make use of more modern supervised machine learning techniques that includes deep neural
networks.

In this paper, we conduct a detailed comparative research on an extensive 3-years of
spare part order history data from the automobile industry. The aim is to predict future
trends in demand and compare results of multiple machine learning methods that includes
K-Nearest Neighbor (KNN), Random Forest (RF), Gradient Boosting (GB), Support Vector
Regressor (SVR), Back Propagation Neural Network (BPNNs), and Deep Neural Networks
(DNNs). We do not compare our model results with statistical approaches like Croston’s
method or Markov bootstrapping as the scope of our work is in the area of Machine Learning,
and it has been proven that Machine Learning approaches outperform statistical models in
the previous studies Shenstone & Hyndman (2003).

We have chosen the Gradient Boosting and Random Forest methods for our research
because they are ensemble models and historically seen to perform better than the base
estimators. In our research, we found that hybrid models produced more effective results,

Modeling the Demand Trend for Automobile Parts 3

which led us to conclude that ensemble models would produce more positive results than
using a single model as in Hua & Zhang (2006); Qiu et al. (2019); Song et al. (2012).
To further verify our expectation, we have selected the K-Nearest Neighbors method as a
comparison method. SVR and Neural Networks are other mainstream machine learning
methods used in this study. On the other hand, Deep Neural Networks have proven to perform
better than traditional machine learning methods in demand trend modeling, we run various
DNNs to compare the resulting error rates with other machine learning models.

This paper is organized as follows. Section 2 presents the related work. Next, we provide
the descriptions dataset in Section 3. Sections 4 and 5 describe the proposed methodology.
Next, the experiment setup and results are presented in Sections 6 and 7. Conclusion and
future work are presented in Section 8.

2 Related Work

Hua & Zhang (2006) designed the Logistic Regression and Support Vector Machine Hybrid
(LRSVM) to synthetically assess autocorrelation in time series and the relationship between
explanatory variables and spare parts demand. It was observed that the LRSVM model
outperformed Croston’s method, the Markov bootstrapping method, the IFM method, and
the SVM method. The hybrid method allowed for the SVM forecast results of nonzero
occurrences to be replaced with explanatory variables to formulate a more accurate prediction.

Researchers used a hybrid model using the Grey’s Forecasting model (GFM) and Back
Propagation Neural Network (BPNN) Hybrid. The GFM was used to produce new data
series from the original data with reduced noise to be used for trend modeling. The BPNN
then uses the new data series to generate trend analysis results. By combining those two
models, the authors were able to produce higher forecasting precision than the models
executed separately Song et al. (2012).

In reference Qiu et al. (2019), Qiu et al. proposed a derivation of the Grey’s model, the
Fractional Order Discrete Grey Model (FOGM) addresses issues such as small sample size
and limited information, enabling it to forecast data sequences even less data samples. The
genetic algorithm is used to estimate fractional order and generate coefficient for the FOGM
to minimize the MAE of the predicted value. With this modification, the researchers are
able to produce a model that is closer to the actual value than a single gray model.

In Boukhtouta & Jentsch (2018) the Support Vector Machine (SVM) was used to make
predictions of spare parts for the Canadian Armed Forces. In comparison to the ARIMA,
Naive, Croston and SES, the researchers concluded that the SVM had a lower average
A-MAPE. Additionally, they discovered that the Asymmetric Error, which aims to emphasize
the costs associated with over-forecasting and the loss of operational availability resulting
from under-forecasting, i.e., unfulfilled part orders, was lower for SVM when applied to
intermittent demand series and compared to other machine learning models.

Authors in Wanchoo (2019) compared the Gradient Boosting Model (GB) and Deep
Neural Networks (DNN) models in retail for forecasting univariate sales time series. Authors
made the observation that either of the two models can be relied on when there is a lack
of causal factors or historical data. GB performed better than the DNN and GB may have
the tendency to overfit the data while the DNN was vulnerable to vanishing and exploding
gradients.

Authors in Zamani et al. (2025) predict lead time of orders from the Kanban system in
the lean supply chain scenario. They compare the performance of multiple linear regression,

4 author

Table 1 Number of unique values for each descriptive feature in the spare part dataset

Feature # of Unique Values
part_definition_id 1918
part_product_class_id 446
common_part_catalog_id | 29
preferred_supplier_id 5

part_family_id 225

KNN, MLP, random forest and conclude that MLP is the best model for predicting orders
and logistical regression is effective in lead time prediction. Authors in Lu et al. (2023)
predict sales volume of auto parts using a bidirectional gated recurrent unit (Bi-GRU) model.
Their results show that Bi-GRU model performs better than other compared models in
predicting sales volume. Authors in Shan et al. (2023) use an improved grey model (1, 1)
to perform functional transformation of the original time series parts data to increase the
data smoothness. Thereafter they use genetic algorithm for predicting sales of auto parts
from this transformed data. Authors in Ikizler et al. (2024) explore ARIMA and SARIMA
models for predictive analytics of spare part inventory and service demand. They find that
there is a strong seasonal pattern to spare part and service demand, the demand peaks in the
second and fourth quarters of an year.

3 Description of Dataset and Research Hypothesis

The demand trend modeling dataset used in this research is obtained from Dogus Automotive,
a private automobile distributor, from its spare parts demand trend modeling competition
in 2020. The company distributes cars of several popular brands including Volkswagen,
Seat, Audi, Bentley, and Lamborghini and their spare parts. The dataset consists of two
tabular-format tables, which can be joined together using part ID column. Here are the
details of the tables:

- catalog: The catalog table consists of information related to each automobile
part. There are 5,000 parts and 5 descriptive features for each part: part_definition_id,
part_product_class_id, common_part_catalog_id, preferred_supplier_id, part_family_id.
Each descriptive feature refers to the ID number sourced in other tables. Therefore, we
decided to use the ID numbers in the feature selection phase. In order to decide the approach
to follow for each feature, we first look at how many unique values exist in each of them as
shown in Table 1. If the number of unique values for a feature is high, then it is suitable
for KNN clustering. If it is low (< 30), then an encoding algorithm can be implemented as
the space constraint does not pose an issue. Table 2 shows sample data from the catalog
table of the parts dataset, each part has : part_id, part_definition_id, part_product_class_id,
common_part_catalog_id, preferred_supplier_id, part_family_id, stock_card_create_date,
part_season.

- orders: The orders table consists of information about orders having 206,306 rows of
data. An order consists of part_id, order_quantity, date, and firm_id. We can create features
via Time Series Analysis based on the history of each part’s orders. Table 3 shows sample
data from the orders table of the parts dataset, each order has : part_id, order_quantity, date,
firm_id. Figure 6 shows total order quantity across all order placed in a pariticular month
during 2017-2019.

Modeling the Demand Trend for Automobile Parts

Table 2 Sample Data from the Catalog Table of the Parts Dataset

part_id 178 234 312 325 712
part_definition_id 4823 4823 3013 8726 10345
part_product_class_id 190 190 360 335 555
common_part_catalog_id 39 39 23 39 39
preferred_supplier_id 1 1 1 1 1
part_family_id 2 2 1 2 2
stock_card_create_date | 1/10/2014 | 4/30/2010| 6/20/2016 | 12/24/2004 | 12/24/2004
part_season NULL NULL NULL NULL NULL
Table 3 Sample Data from the Orders Table of the Parts Dataset
part_id order_quantity date firm_id
10407 3 5/23/2018 53
10945 3 11/28/2017 3
10232 3 2/22/2018 43
10021 3 5/16/2018 121
6124 3 4/18/2018 45
10578 3 1/30/2017 42
468 3 7/5/2017 88
10264 3 5/13/2019 102
10978 18 11/6/2017 84

The research hypothesis in this paper is to evaluate various machine learning methdologies
along with data preprocessing and feature selection strategies to be able to correctly model the
demand trends for automobile spare parts based on historical data so that the trained machine
learning model could be used for prediction of future demand for spare parts based on the
training and validation data from the preprocessed parts dataset. The model performance is
compared using several different metrics for an in depth analysis of parts demand modeling
in the experiment results section of this paper. Another goal of this research is to apply
various state-of-the-art preprocessing and feature extraction techniques to process the parts
dataset.

4 Preprocessing and Feature Generation Methodology

4.1 Handling Outliers

Before applying bins to the data, a clamp transformation has been applied to remove the
outliers. We separate the data into bins while setting the maximum quantity to 72. This is
based after observing the frequencies, values greater than 72 can be considered as outliers.

6 author

Crder Quantity Histogram

60000

0000

20000
10000 I
0 I--__ L —|

036 91215182124 373033 36 3942 45 4351 54 5760 63 66E0 72
Order Cuantity

¢ s
= a8

Frequency

Figure 1: Order quantity bin histogram that shows the skewness in the data.

Since the lowest value of an order quantity can be zero, no transformation is applied to the
lower bound. After applying clamp transformation to the target feature, order_quantity, it is
seen that the target is much skewed to the left (positively skewed) with a skewness value
of 4.51 as seen in Figure 1. It is expected that the frequency of smaller orders will be far
higher than larger orders. We do not apply any normalization to this feature, it is the target
feature we want to predict; thus we do not transform it to any other scale.

4.2 Data Imputation

The orders table consists of information about orders having 206,306 rows of data. An order
consists of part_id, order_quantity, date, and firm_id. The orders table does not give any
information about the days where there was no order placed. We inserted zero orders to
the days where there is no order for a specific part_id, our conjecture is that it may be an
insightful detail when building a prediction model. After this augmentation, the dataset’s
initial size of 206,306 rows increased to 237,805.

4.3 Handling Multiple Rows Corresponding to the Same Part

The original data has more than one order associated to several parts. The aim of the research
is to predict the monthly orders for each part_id. Therefore, where there may be more than
one order for a particular part in a specific month, we group it by the part_id and we compute
sum of order_quantity for each part. Thus we reduce the 237,805 rows from the previous
step to 167,059 rows, such that there is exactly one row corresponding to each part in the
training data.

Modeling the Demand Trend for Automobile Parts 7

4.4 Generating Time Series Features

Time series analysis involves establishing a stochastic model for temporal data by examining
its properties. This method utilizes the stochastic model to forecast the long-term trend
Tingting Huang et al. (2010). In order to predict the order quantities for a given month we
generate time series features in addition to the descriptive features of part_ids. We generate
lag-N features where N represents the number of months. For example, order_quantity_lag3
represents the order quantity with a lag of three months as a moving window of months. In
addition we take the sum, mean, and standard deviations of lag-N features for 1 < N < 6
to test which lag best explains the target feature.

4.5 Clustering Categorical Features

The descriptive features of part_ids are in ID format, meaning that they cannot be used for
modeling purposes as several of Sklearn’s Pedregosa et al. (2011) algorithm implementation
cannot handle categorical features. Thus, we need a way to convert these categorical features
into continuous features. We use binary encoding, which encodes information to a bit,
for the features that have a few number of categories Todd (2014). For the rest, we apply
K-means clustering with K = 5. K-means clustering is an unsupervised learning algorithm
that groups data points into K clusters by calculating their Euclidean distance Nuchprayoon
(2014). The algorithm first randomly creates K center points, which are called centroids,
then in each iteration, it assigns the data points to the cluster with the closest centroid.

The reason why we applied K-means clustering to some of our categorical features is to
avoid the possibility of overfitting during modeling. As can be seen in Table 1, there are too
many distinct values for part_definition_id, part_product_class_id, and part_family_id that
can cause the model to overfit.

Therefore, we used normalized order quantity averages and standard deviations of each
unique value for each feature to assign to clusters. Figure 2 shows scatterplot of mean
versus standard deviation of order_quantity for three descriptive features, before and after
K-means clustering. It can be observed that smaller size (quantity ordered) orders are more
densely clustered with a lower mean and standard deviation compared to larger size orders
that have a larger standard deviation. Similar clustering pattern can be seen across all three
descriptive features namely part_definition_id, part_product_class_id, part_family_id.

4.6 Binary Encoding Categorical Features

We clustered three of five descriptive features of parts. We transform the remaining two
features, common_part_catalog_id and preferred_supplier_id, into either a continuous
variable or a binary variable in order to be able to use those for modeling. We chose to
convert common_part_catalog_id with a default transformation as it has a lot of unique
values. part_family_id can be transformed to a binary variable using binary encoding. Binary
encoding is a categorical feature transformation method that creates N new binary features
where N is the number of unique values for that categorical feature Todd (2014). Thus, in
our case, we create 5 new features for preferred_supplier_id and specify those with a suffix
_binenc[N].

8 author

Mean versus Standard Deviation of order_quantity for each part_definition_id (before and after clustering)

. .o T .]
35 = T . 35 1 I A
T w% L - . 2 LI . -
30 HYS . ¥ilaes T T .
25 WO o 25 & 4 P .
* 5
% 20 g 20 'é
15 15
1.0 10
05 05
oo 0.0
0 2 4 [8 10 0 2 4 6 8 10
mean mean

Mean versus Standard Deviation of order_quantity for each part_product _class_id (before and after clustering)

oo . 0
.
30 . & * 30 1
e 2
.
25 25 | ® 3 sagg,
e 4 P
'
20 20 1w blecey
=)] ot
P s " 15 $¥a o2
: Sges,2
10 10 "t
%t
.
05 05 g_
00 00
o 2 4 6 8 10 [} 2 4 6 8 10
mean mean
Mean versus Standard Deviation of order_quantity for each part_family_id (before and after clustering)
a5 - . 35 0 .
. . c . .
.
30 . o 2 S . 0 . 2 .
S 3 e 3
25 -- -, . 25 o0
%
20 —— 20 * 8
B L) .e 3=
w . . @
15 o« 8% 15
.
-
10 2 10
. ¢ %
. .
. &
oo oo
o 2 4 3 8 10 o 2 4 B 8 10
mean mean

Figure 2: Scatterplot of mean versus standard deviation of order_quantity for three descriptive
features, before and after K-means clustering.

4.7 Handling Null Values

When we create new features, particularly in Time Series Analysis, some values are null
due to non-existent previous data. Therefore, in order to build the models, we need to fill
those null values. As a common approach, we first tried to fill the nulls with their respective
category mean value. After model trials, however, we decided to continue with filling with
category maximums because we see a decreasing trend in order quantities. The intuition
behind is that the lag-N features represent the order quantities /N months ago, and they could
be higher than the category maximum for some specific case.

4.8 Finalizing Training Data

See Figure 3 for the feature generation pipeline. Four types of features are generated on
the raw data, namely, time series features, clustered features, binary encoded features and

Modeling the Demand Trend for Automobile Parts 9

ordinal encoded features. Duplicates and outliers are removed and missing values are filled,
the training data has 23 features and 167,059 data points. The training data consists of
167,059 rows with the target feature, order_quantity_bin, and descriptive features as below:

« time_diff_mean: Average time difference in days between the orders of this part_id.

* time_diff_std: Standard deviation of time differences in days between the orders of this
part_id.

* order_quantity_lag[N] where 1 < N < 6: The total order quantity for this part_id N
months ago.

* order_quantity_lag[N]_mean where NV in (3, 6): Average of last N months orders for
this part_id.

e order_quantity_lag[N]_std where N in (3, 6): Standard deviation of last N months
orders for this part_id.

¢ pdid_cluster: Clustered categorical feature from part_definition_id.
* pfid_cluster: Clustered categorical feature from part_family_id.
* pcid_cluster: Clustered categorical feature from part_product_class_id.

e psid_binenc[N] where 1< N <5: Binary Encoded features from
preferred_supplier_id.

¢ psid: Ordinal Encoded feature from preferred_supplier_id.

¢ cpcid: Ordinal Encoded feature from common_part_catalog_id.

4.9 Feature Selection

Before building the models, we want to eliminate some of the features that are highly
correlated with each other. Decision has to be made to drop one of the two correlated
features. In order to build better models, we need to know which feature is describing the
outcome better than the other. Therefore, we first use a SVR algorithm from Sklearn’s
Linear Support Vector Regression module in order to get coefficients of each feature. After
applying the SVR, we observe the most and least correlated features with the target feature
as shown in Figure 4. The three most important features are order_quantity_lag6_mean,
order_quantity_lag3_mean, order_quantity_lagl. The higher the importance of a feature
the more it contributes toward characterizing the data.

Now that we know which feature performs better than the other, we can build a correlation
matrix and determine a maximum threshold that can show correlation between two features.
We select 0.90 as the threshold and starting from the most important feature, we scan the
rest of the features and exclude them as necessary. Figure 5 shows the correlation matrix
where darker color represents higher correlation.

After running the scan, we drop the following features due to high correlation with other
features: time_diff_mean and order_quantity_lag6_sum.

10 author

Orders Table
(Rows: 206,306. Dimension of each row: 4)

h 4

Data after combining information from the catalog table with the orders table.
(Rows: 206,306. Dimension of each row: 11)

I
4

Data after filling zero orders on the days where no order was placed.
(Rows: 237,805. Dimension of each row: 11)

Y

Data after grouping the orders by part_id. Only rows being considered for the
next step are the ones representing the sum of each group.
(Rows: 167,059. Dimension of each row: 11)

v I Generate Features
Time Serves Features Clustered Features Binary Encoded Features Ordinal Encodied Features
. J— pobiad cluster paicd binencX il
v il s piid_chuster | | epid

oeder quawiiby lag poid_clusier
order_quantity_legN_mean

onder quantity fapN atd

Combine features, remove outliers and duplicates. ‘

k4

Final Training Data
(Rows: 167,059. Dimension of each row: 23)

Figure 3: Demand trend modeling dataset generation.

5 Supervised Machine Learning Methodology

For our research we use below machine learning methods. We found there were not many
researches for automobile parts demand trend modeling that use ensemble models such as
Random Forest and Gradient Boosting.

5.1 Support Vector Regressor (SVR)

Support Vector Regressor is a regression method that generates its predictions using a
hyperplane created in the feature space. The hyperplane is created in such a way that it
minimizes the total error (e.g., sum of the results from kernel function for each data point).
We use the Radial Basis Function as the kernel function for demand trend modeling.

Modeling the Demand Trend for Automobile Parts 11

Feature Importances According to SVM Coefficients

60O
400

200

=3

-200

L £ » .
‘?ﬁ & & §b & ou’ﬂ o“'\’ ,‘;; & ,‘;’ 5 & ¥y & ‘;: & ;,‘3‘& & .‘,‘3‘& _{;@’ gy & & F
& 3 K 7 & 54 K K & T & F 4
§ 8 G - - A N - VRPN LR R - A S
D& voE d FF TS EF N F S FYFSE T E RS
&) & » B B o F ¥ T ® F a0 F & F & 0F & 3
T & § & &§ § & §F ¢ § § § & ¢ 8 & & &
= &7 L3 & & &7 I & & & & = =
f & & & & F & F & & F F
& 7 & & §F & § g 7§ & §
¢ i & ¢ § &
B & o =] & &
& § & & g 8

Figure 4: Bar chart of feature importance according to Support Vector Machine Regressor
coefficients.

5.2 K-Nearest Neighbors (KNN)

K-Nearest Neighbors is a classification technique that uses a given set of neighbors to
classify new data. The K represents the number of nodes the algorithm will use to classify
new data by finding the distance of the new data from its neighbors Khan et al. (2019).

5.3 Random Forest (RF)

Random Forest is an ensemble learning method that utilizes decision trees to make predictions
by taking either the mode of the decision trees or the mean prediction of each tree Lahouar
& Ben Hadj Slama (2015).

5.4 Gradient Boosting (GB)

Gradient Boosting is a machine learning method for regression and classification problems.
It produces predictions, usually by using decision trees, and minimizes error by modifying
the weights of the trees that produce the best outcomes Gumus & Kiran (2017).

5.5 Back Propagation Neural Networks (BPNN) and Deep Neural Networks (DNN)

We use both multilayer perceptron model as well as DNNs with several hidden layers in
our research. Deep Neural Networks (DNNs) are sophisticated Machine Learning models
characterized by numerous hidden layers. The output of each layer serves as the training data
for the next layer, culminating in the generation of classification probabilities or regression
values at the final (prediction) layer. DNNs can feature multiple hidden layers, each potentially
containing a different number of neurons. The activation function of each layer dictates
how individual neurons respond to input instances. Lastly, the predictor layer combines
probabilities produced in the next-to-last dense layer to come up with a single prediction for a
data instance. A prevalent challenge encountered with DNNss is the convergence issue, often

12 author

order_quantity_lagé_mean -
arder_quantity_lag3_mean .
time_diff_std -

time_diff_mean - .

order_quantity_lagl ..
order_guantity_lag6_std ..
time -
pdid_cluster -
order_quantity lag3_sum ..
order_quantity_lagh .
order_guantity_|agh_sum ..
order_quantity_lag2 ..

opcid -
peid_cluster -
psid_binenc_4 -
order_quantity_lags .
pfid_cluster -
order_guantity_lag5 .
order_quantity lag3_std ..
psid_binenc_3 -
psid_binenc_5 -
order_guantity_lag3 -..
psid_binenc_2 -
psid_binenc_1 -

time_diff_std -

order_guantity_lag3_mean -

order_quantity lagh mean -

time_diff_mean -

1 1 ll 1
—- = -
= 6 E £
= lﬂl k=] g
B on =]
:E m :I

i =

5 = =
ER=
U’I =

m

i 3
bzl UI
° 3

&

10

08

-04

L] -02
=lll H

I I I Ll I I i I ' I i i i Ll i I
E M E ™ B 5o o 5w B oMmonomoeH
o o 5T M L= - I o I |
A8 78 g8 g8 e Ny ds 2y
|y B | = (= [N TR T} [TR}
m =)] e) [w]) o = =) = =
= on o 1= = (=1 mo .= = ==
g 5 @ = g5 8 g8 85 858 8 5 8
= [= =i (=1 - e = (=1 = I e I I
= 5 = 8 iE2 f B g &0 o8 2@
5 5 8 T i T T £ & A o A H
c e Ll Lom L
35 F B &
o o |
.
EI 5 hl =] 5 =] B =]
bzl = B
5 =

Figure 5: Correlation matrix of features ordered from most important to least important.

exacerbated by their susceptibility to overfitting. Mitigating overfitting can be accomplished
by reducing model complexity, such as by introducing a dropout layer between dense layers.

5.6 Validation Strategy

We decided to move forward with Time Series Cross Validation (TSCV) method in this
research. In TSCV, we select K folds just as we do in the K-fold cross validation, but we
separate the folds according to a Time Series split instead of a random and/or shuffled split
Medar et al. (2018). Figure 6 shows total order quantity for each month.

Next we define our validation strategy and select the time ranges for the models. We
select five folds with each fold’s validation period being five months as shown in Figure 7,
this is based on empirical estimate that five months of order data consisting of 25,000 rows
is an adequate number to objectively evaluate performance metrics.

Modeling the Demand Trend for Automobile Parts 13

Total Orders per Month
34000

32000

30000

2 28000
(=]
@
& 26000
5
=
5 24000
22000
20000
18000
,\0 ,\01 & 0?:\0 '\Q@'\Q« 0“5 & -\Q;\ '\\,\ '\l‘bﬁ %01%0“’%0?‘%05%0@%ﬁ\%a%‘baq‘b\e‘b\\%\l%W gawqaﬁqa?‘gahqaq’qé\ga%‘aaq%\e‘_)'\\q\l
L W3
B N N
Month
Figure 6: Total order quantity for each month.
Fold\Period 2017-01 2018-04 | 2018-08 | 2018-12 | 2019-04 | 2019-08
2018-04 2018-08 | 2018-12 | 2019-04 | 2019-08 | 2019-12
1 TRAINING VALIDATION
2 TRAINING VALIDATION
3 TRAINING VALIDATION
4 TRAINING VALIDATION
5 TRAINING VALIDATION

Figure 7: Time Series Cross Validation (TSCV) with five folds used in this research.

6 Experiment Setup

To implement our research, we used Jupyter Notebook in Python 3 with the data manipulation
and modeling tools such as Sklearn, Pandas, and Numpy. For data visualization we made
use of Seaborn and Matplotlib. The main programming language is Python and the tools
used in the study are Pandas, NumPy, Plotly, and Sci-kit learn Ghaddar & Naoum-Sawaya
(2018); McKinney & Team (2015); Pedregosa et al. (2011); Walt et al. (2011).

After inserting missing rows, correcting the data, clustering categorical features, filling
null values, dropping correlated features, deciding on the modeling methods and validation
strategy, we finally build the KNN, RF, GB, SVR, BPNN, and DNN models. There are
several parameters used in each model, in this research we will focus our discussion on
some of the more important parameters. We use Sklearn’s Pedregosa et al. (2011) machine
learning library to build our models.

To assess the performance of each model type, we opted for Mean Absolute Error (MAE)
and Mean Squared Error (MSE) as they are widely utilized metrics in machine learning.
MAE range is in the target’s scale, thus making it easier to interpret the results. Table 4
provides a detailed description of parameter set used to train various machine learning
models for parts demand modeling.

14 author

Table 4: Description of Parameters used in Various Models for Parts Demand Modeling

Model Name and Parameter(s)

Model Name: SVR
max_iter=10,000. Maximum number of iterations for running update function.
kernel="rbf’. The radial basis function is used in the model.

tol=0.00001. Tolerance value for early stopping.

Model Name: RF
n_estimators=100. Number of decision trees to be used in the forest.
max_depth=7. Maximum depth of a decision tree.

min_samples_split=100. Minimum number of data instances required to make a split
from a node.

min_samples_leaf=40. Minimum number of data instances required in a leaf node.
max_leaf _nodes=45. Maximum number of leaf nodes.

bootstrap=True. Use bootstrapping when generating subset for each estimator.

Model Name: GB
n_estimators: [100, 200, ..., 1000]. Number of decision trees to be used in the forest.

learning_rate: 0.01. The value is used to determine how fast the estimator will learn the
target features.

max_depth: 7. Maximum depth of a decision tree.

max_leaf nods: 45. Maximum number of leaf nodes.

Model Name: DNN

Base Model:

Normalization Layer

Dense Layer with 128 nodes and ReLU activation

Prediction Layer

Loss = MAE, Optimizer = Adam, Learning Rate = 0.01, Epochs = 20

2-Layer Model with SGD
Normalization Layer

Dense Layer with 128 nodes and ReLLU activation

Continued on next page

Modeling the Demand Trend for Automobile Parts 15

Table 4: Description of Parameters used in Various Models for Parts Demand Modeling
(Continued)

Dense Layer with 64 nodes and ReLLU activation
Prediction Layer
Loss = MAE, Optimizer = SGD, Learning Rate = 0.001, Epochs = 30

3-Layer Model with Adam:

Normalization Layer

Dense Layer with 128 nodes and ReLLU activation

30% Dropout Layer

Dense Layer with 64 nodes and ReLLU activation

30% Dropout Layer

Dense Layer with 32 nodes and ReLU activation

Prediction Layer

Loss = MAE, Optimizer = Adam, Learning Rate = 0.001, Epochs = 40

3-Layer Model with SGD:

Normalization Layer

Dense Layer with 128 nodes and ReLLU activation

30% Dropout Layer

Dense Layer with 64 nodes and ReLU activation

30% Dropout Layer

Dense Layer with 32 nodes and ReLU activation

Prediction Layer

Loss = MAE, Optimizer = SGD, Learning Rate = 0.001, Epochs = 40

Best Model:

Normalization Layer

Dense Layer with 128 nodes and ReLU activation

Dense Layer with 64 nodes and ReLU activation

Dense Layer with 32 nodes and ReLU activation

Prediction Layer

Loss = MAE, Optimizer = Adam, Learning Rate = 0.001, Epochs = 50

16 author

Table 5 Training and validation results of KNN model

Five-Fold Results Standard
Metric 1 2 3 4 5 | Average | Deviation
RMSE Train 6.14 | 6.25 | 637 | 6.52 | 6.71 6.40 0.18
RMSE Validation | 7.02 | 6.90 | 7.04 | 7.37 | 7.66 7.20 0.25
MAE Train 3511359 | 370 | 3.82 | 3.96 3.72 0.15
MAE Validation | 3.92 | 3.88 | 3.90 | 4.24 | 4.58 4.10 0.25

7 Experiment Results and Discussion

7.1 K-Nearest Neighbor Model (KNN) Results

In the KNN model we initially set n_neighbors parameter to 5. The remaining parameters
are set to their default value. For example, the weights parameter is set to ‘uniform’, meaning
that all the points in each neighborhood are weighted equally.

After running the KNN model, we obtained an average RMSE of 7.20 and MAE of 4.10
on our validation data. Table 5 shows the metrics details for each fold. The standard deviation
across five-folds on the validation set for the RMSE and MAE is 0.25. Since training and
validation performance is close to each other, we do not see any issue of overfitting.

7.1.1 KNN with increasing number of neighbors

After running the KNN model with 2, 3, 4, ..., 10, 20 neighbors, we end up with an optimal
RMSE of 6.77 on validation set when the neighbors n = 20, which is significantly better
than it was when neighbors n = 5 (7.20). Figure 8 depicts how training and validation
scores differ at varying number of neighbors.

7.2 Random Forest Model (RF) Results

RF model can have many parameters for creating a tree or when ensembling the trees. Below
are our settings for the parameters:

e n_estimators = 100

* criterion = mse

e max_depth =7

o min_samples_split = 100
* min_samples_leaf = 40
* max_leaf_nodes = 45

After running the RF model, we obtained a RMSE of 6.6/47 and MAE of 3.82 on our
validation data. Table 6 represents the metrics details for each fold. The standard deviation
across five-folds on the validation set for the RMSE and MAE is 0.19 and 0.46 respectively.
Since training and validation performance is close to each other, we do not see any issue of
overfitting.

Modeling the Demand Trend for Automobile Parts 17

Change in RMSE in increasing Neighbors (KNN)

8.0 4 variable
— mse_train
751 mse_valid
7.0 1 ——
E]
— 55 4
g
6.0 1
5.5 1
5.0 1
2 345617891 20
neighbors

Figure 8: KNN model results at varying number of neighbors.

Table 6 Training and validation results of RF model

Five-Fold Results Standard
Metric 1 2 3 4 5 | Average | Deviation
RMSE Train 6.79 | 6.87 | 7.00 | 7.13 | 7.27 7.02 0.16
RMSE Validation | 6.46 | 6.43 | 6.50 | 6.71 | 6.97 6.61 0.19
MAE Train 398 | 4.06 | 4.17 | 429 | 4.44 4.19 0.15
MAE Validation | 3.62 | 3.63 | 3.72 | 493 | 4.20 3.82 0.46

7.2.1 RF with increasing number of estimators

The RF model’s performance changes only slightly at increasing number of estimators.
Figure 9 shows RMSE at increasing number of estimators. RF model has an average RMSE
of 6.61 on the validation set, which is better than the KNN model.

7.3 Gradient Boosting Model (GB) Results

In GB model we set the parameters same as they are being set for RF model. Since the two
methods are both based on decision trees, they have similar parameters. Methods differ in
the way they ensemble.

After running the GB model, we obtained an average RMSE of 6.8383 and MAE of
4.09 on our validation data. Table 7 shows the metrics details for each fold. The standard
deviation across five-folds on the validation set for the RMSE and MAE is 0.23 and 0.26
respectively. Since training and validation performance is close to each other, we do not see
any issue of overfitting.

18 author

Change in RMSE in increasing Estimators (RF)

7.0 1
69 4
variable

[T}
=2 = mse_train
£ 68 mse_valid

6.7 1

6.6 1

10 20 30 40 50 60 70 80 90 100
estimators

Figure 9: RF model results at increasing number of estimators.

Table 7 Training and validation results of GB model

Five-Fold Results Standard
Metric 1 2 3 4 5 | Average | Deviation
RMSE Train 714 | 725 | 742 | 7.59 | 7.74 7.43 0.20
RMSE Validation | 6.66 | 6.64 | 6.66 | 6.94 | 7.30 6.84 0.23
MAE Train 4.19 | 431 | 4.69 | 4.63 | 4.78 4.47 0.21
MAE Validation | 3.79 | 3.87 | 3.99 | 4.29 | 4.56 4.09 0.26

7.3.1 GB with increasing number of estimators

The GB model has the average RMSE of 6.56 when the number of estimators is n = 1000,
the result is better than KNN and RF. Since the ensembling method of GB is different from
RF, that is, GB calculates the error at every other estimator while RF is a voting-based
method, we expected a decrease in the error when we increased the number of estimators.
Due to our limited computing power, we did not investigate further the effects of increasing
the estimators beyond n = 1000. Figure 10 shows how the change in estimators changes
the model performance.

7.4 Model Comparison between KNN, RF, and GB

After running each of the three models, i.e., KNN, RF, and GB with different parameter
sets, we observe that the best RMSE of 6.56 on validation set is obtained from GB. We
present the actual versus predicted order quantities graph in Figure 11, we observe that the
prediction trend fits the actual outcome, which shows the importance of parameter tuning of
machine learning models. We observe that GB is close to the actual trend. Although KNN

Modeling the Demand Trend for Automobile Parts 19

Change in RMSE in increasing Estimators (GB)

7.4 4 variable
= mse_train
mse_valid
7.2 1
3 701
g
6.8 1
6.6 4

100 200 300 400 500 600 700 8OO0 900 1000
estimators

Figure 10: GB model results at increasing number of estimators.

Total Orders per Month (Optimized Parameters)

34000 variable

— order_quantity
order_quantity_knn

— order_quantity_rf

order_quantity_gb

32000

30000

=]
=]
=]
=]

26000

Order Quantity

24000

22000

20000

18000

FEPFREIPILVIIIPFIPIRILHIIIIDPF PPN RSP O

SV Y SV SV AN N SV AN SN N N A AR AR A A A D A A A A A o o S N Y Y S P Y

026 20 0 0 S S0 NI S S S S 1 S 6 A N I S S S S S S S0 S S S S S S8 N S N I G
Month

Figure 11: Actual versus predicted order quantities with KNN, RF, and GB models.

predicted close to GB, GB was slightly more successful in modeling the ups and downs of
the parts demand trend.

7.5 Time Efficiency of KNN, RF, and GB Models

Due to the inherent complexity, the ensemble models such as RF and GB are expected
to take longer than KNN. KNN model fitted in 5.053 seconds, while RF fitted in 58.620
seconds, and GB fitted in /03.104 seconds. Fitting time of RF could be reduced by using
hardware that supports greater parallelism.

20 author

Table 8 Training and validation results of SVR model

Five-Fold Results Standard
Metric 1 2 3 4 5 | Average | Deviation
RMSE Train 742 | 755 | 7.74 | 7.94 | 8.20 7.77 0.25
RMSE Validation | 6.77 | 6.80 | 6.79 | 7.19 | 7.49 7.01 0.26
MAE Train 421 | 432 | 499 | 4.66 | 4.87 4.51 0.28
MAE Validation 3.61 | 3.64 | 3.69 | 3.95 | 420 3.82 0.21

Table 9 Training and validation results for BPNN model

Five-Fold Results Standard
Metric 1 2 3 4 5 | Average | Deviation
RMSE Train 6.74 | 693 | 7.04 | 7.30 | 7.41 7.08 0.22
RMSE Validation | 6.59 | 6.69 | 6.60 | 6.94 | 7.22 6.81 0.22
MAE Train 3.85 | 4.03 | 419 | 434 | 436 4.15 0.18
MAE Validation | 3.57 | 3.64 | 3.63 | 3.93 | 4.18 3.79 0.21

7.6 Support Vector Regressor (SVR) Model Results

After running the SVR model, we obtained the results presented in Table 8. With 7.01
average RMSE and MAE of 3.82 on validation set, the SVR model performs lower than the
RF and GB models. The standard deviation across five-folds on the validation set for the
RMSE and MAE is 0.26 and 0.21 respectively. Since training and validation performance
is close to each other, we do not see any issue of overfitting. Thus, we conclude that the
ensemble models perform better on the spare parts dataset.

7.7 Back Propagation Neural Networks (BPNN) Model Results

The results obtained from BPNN model are shown in Table 9. We built BPNN model in
Python using Scikit Learn’s MLPRegressor module with a maximum number of iterations
from 200, 300, 400, ..., 1000. Ultimately obtained an average RMSE score of 6.8/ and MAE
of 3.79 on the validation set, which is slightly higher than GB model’s result 6.56. The
standard deviation across five-folds on the validation set for the RMSE and MAE is 0.22
and 0.21 respectively. Since training and validation performance is close to each other, we
do not see any issue of overfitting.

7.8 Deep Neural Networks (DNN) Model Results

We used Keras” DNN model with various configurations that could outperform the Gradient
Boosting model. These variations included 2-3 hidden layers with a default normalization
layer, and dropout layers. We also used learning decay to achieve the local minima, reaching
the RMSE validation score of 6.25. This score is significant to conclude that Deep Neural
Networks are better in predicting the intermittent demand in comparison to the rest of the
models.

Modeling the Demand Trend for Automobile Parts 21

Table 10 Training and validation results of various DNN models

Model Name Layers | Epochs | Dropout | Optimizer | Learning RMSE RMSE

Rate Train | Validation
Base 128 20 - Adam 0.01 7.71 7.10
2-Layer SGD 128-64 30 - SGD 0.001 6.76 6.78
3-Layer Adam 128-96-64 40 30% Adam 0.01 7.36 7.08
3-Layer SGD 128-64-32 40 10% SGD 0.001 7.33 7.04
Best Model 128-64-32 50 10% Adam 0.001 5.21 6.25

Table 10 shows the results of DNN models. More than 20 configurations of DNN with
different parameters have been run and 5 significant models are presented. The best result is
presented in the last row - the three layers, 128-64-32 node DNN model at 100 epochs of
training. Since training and validation RMSE performance is close to each other, we do not
see any issue of overfitting. The 6.25 RMSE score on the validation set obtained from the
best model is significantly better than the results obtained from rest of the machine learning
models in this research

7.9 Challenges in Demand Trend Modeling of Spare Parts

Challenges of this research include newly added products, missing parameters, outlier
detection, and high computational requirements. For the purposes of demand trend modeling,
newly added products may not have enough available historical data to make an accurate
prediction. One of the missing parameters is price, if available it may have strong correlations
to sales orders and could improve the prediction. The price of an item may be correlated to
sales orders because if the product is expensive, there may be fewer sales orders placed and
opposite if the price is low. The computational requirements are expensive as hyperparameter
grid is increased.

8 Conclusion and Future Work

Based on the research conducted, we conclude that DNN performs better than rest of the
machine learning models on the spare parts dataset. Performance of BPNN and GB is close
to each other. After a thorough literature review, it is observed that there are few previous
researches done on Gradient Boosting Regression for demand trend modeling. Our research
proves that Gradient Boosting’s performance is strong across traditional machine learning
models. Furthermore, SVR has been previously used for demand trend modeling of spare
parts but other models that we tested perform better.

To get a rich feature set our feature generation strategy includes generating time series
features, we applied clustering the categorical features, inserting zero orders for the days
that there were no orders, and Binary Encoding of the rest of categorical features.

As future work we plan to look into specific DNNs that might perform well in demand
trend modeling, such as Recursive DNNs. Other methods that we plan to explore are Bayesian
hyperparameter optimization for the GB model and combining DNNs with traditional
machine learning methods.

22 author

References

Amin-Naseri, M. R. & Rostami Tabar, B. (2008), ‘Neural network approach to lumpy
demand forecasting for spare parts in process industries’, Proceedings of the International
Conference on Computer and Communication Engineering 2008, ICCCEOS: Global Links
for Human Development pp. 1378—1382.

Boukhtouta, A. & Jentsch, P. (2018), Support vector machine for demand forecasting of
canadian armed forces spare parts, in ‘2018 6th International Symposium on Computational
and Business Intelligence (ISCBI)’, pp. 59-64.

Ghaddar, B. & Naoum-Sawaya, J. (2018), ‘High dimensional data classification and feature
selection using support vector machines’, European Journal of Operational Research.

Gumus, M. & Kiran, M. S. (2017), ‘Crude oil price forecasting using XGBoost’, 2nd
International Conference on Computer Science and Engineering, UBMK 2017 pp. 1100-
1103.

Hua, Z. & Zhang, B. (2006), ‘A hybrid support vector machines and logistic regression
approach for forecasting intermittent demand of spare parts’, Applied Mathematics and
Computation 181(2), 1035-1048.

Ikizler, T., Ozcelik, A. E. & Uslu, B. C. (2024), ‘Predictive analysis of the number of spare
parts and techincians in service employment in the automobile industry’, Selcuk University
Journal of Engineering Sciences 23(3), 92-98.

Khan, S., Khan, Z. A., Noshad, Z., Javaid, S. & Javaid, N. (2019), ‘Short Term Load and Price
Forecasting using Tuned Parameters for K-Nearest Neighbors’, ITT 2019 - Information
Technology Trends: Emerging Technologies Blockchain and IoT pp. 89-93.

Lahouar, A. & Ben Hadj Slama, J. (2015), ‘Random forests model for one day ahead load
forecasting’, 2015 6th International Renewable Energy Congress, IREC 2015.

Lu, C., Shang, G., Xu, L., Shao, H. & Zhang, B. (2023), ‘Sales volume forecast of typical
auto parts based on bigru: A case study’, E3S Web Conf. 409, 04008.

McKinney, W. & Team, P. D. (2015), ‘Pandas - powerful python data analysis toolkit’,
Pandas - Powerful Python Data Analysis Toolkit.

Medar, R., Rajpurohit, V. S. & Rashmi, B. (2018), ‘Impact of Training and Testing Data
Splits on Accuracy of Time Series Forecasting in Machine Learning’, 2017 International
Conference on Computing, Communication, Control and Automation, ICCUBEA 2017
(April 2020), 1-6.

Nuchprayoon, S. (2014), ‘Electricity load classification using K-means clustering algorithm’,
IET Conference Publications.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M. & Duchesnay, E. (2011), ‘Scikit-learn: Machine learning in
Python’, Journal of Machine Learning Research 12, 2825-2830.

Modeling the Demand Trend for Automobile Parts 23

Qiu, Q., Qin, C., Shi, J. & Zhou, H. (2019), Research on demand forecast of aircraft spare
parts based on fractional order discrete grey model, in 2019 IEEE 5th International
Conference on Computer and Communications (ICCC)’, pp. 2212-2216.

RuiRui Xing, Xianliang Shi, Member, I. (2019), ‘A BP-SVM combined model for intermittent
spare parts demand prediction’, pp. 1085-1090.

Shan, H. S., Qin, M., Zhang, L., Meng, Z. & Peng, P. (2023), ‘The annual sales forecast for
a chinese auto parts manufacturer based on igm (1,1)’, Journal of Grey System 35(1), 113.

Shenstone, L. & Hyndman, R. J. (2003), ‘Stochastic models underlying croston ’ s method
for intermittent demand forecasting stochastic models underlying croston * s method for
intermittent demand forecasting’, Business.

Song, H., Zhang, C., Liu, G. & Zhao, W. (2012), Equipment spare parts demand forecasting
model based on grey neural network, in ‘2012 International Conference on Quality,
Reliability, Risk, Maintenance, and Safety Engineering’, pp. 1274-1277.

Tingting Huang, Wang, L. & Jiang, T. (2010), Prognostics of products using time series
analysis based on degradation data, in ‘2010 Prognostics and System Health Management
Conference’, pp. 1-5.

Todd, M. D. (2014), Sensor data acquisition systems and architectures, Vol. 1, Woodhead
Publishing Limited.

Walt, S. V. D, Colbert, S. C. & Varoquaux, G. (2011), “The numpy array: A structure for
efficient numerical computation’, Computing in Science and Engineering.

Wanchoo, K. (2019), ‘Retail Demand Forecasting: a Comparison between Deep Neural
Network and Gradient Boosting Method for Univariate Time Series’, pp. 5-9.

Xu, Q., Wang, N. & Shi, H. (2012), ‘A Review of Croston’s method for intermittent demand
forecasting’, Proceedings - 2012 9th International Conference on Fuzzy Systems and
Knowledge Discovery, FSKD 2012 (61100009), 1456-1460.

Zamani, F., Ebrahimi, A., Soltani, R. & Farhang Moghaddam, B. (2025), ‘Predicting the lead
time of auto parts orders in the supply chain using machine learning’, Business Intelligence
Management Studies 13(52), —.

